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Abstract: We consider a linear dynamical system under the action of potential and circulatory forces.
The matrix of potential forces is positive definite, and the main question is when the circulatory forces
induce instability to the system. Different approaches to studying the problem are discussed and
illustrated by examples. The case of multiple eigenvalues also is considered, and sufficient conditions
of instability are obtained. Some issues of the dynamics of a nonlinear system with an unstable
linear approximation are discussed. The behavior of trajectories in the case of unstable equilibrium
is investigated, and an example of the chaotic behavior versus the case of bounded solutions is
presented and discussed.
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1. Introduction

In the theory of dynamical systems, interest in the properties of symmetry is steadily growing.
In recent decades, a systematic study of systems possessing the so-called reversible symmetry has
become widespread [1–5]. Consider an autonomous dynamical system with continuous time, governed
by the ordinary differential equation:

dx
dt

= f (x). (1)

It is said [1] that the map S : Rn → Rn is a reversing symmetry of (1) if:

d
dt
(Sx) = − f (Sx).

In this case, System (1) is invariant with respect to transformation (t, x)→ (−t, Sx).
The stability problem for non-conservative dynamical systems is one of the fundamental problems

in modern science and technology. It is related to many real-life applications and is mainly matched
with the response of mechanical systems to parametric excitation and flutter phenomenon exhibited
by aerospace systems undergoing interaction between a structure and fluid flows, as well as playing a
crucial role in the control of walking robots and many others [6–11].
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In this paper, we study a generic canonical form of a finite-dimensional system governed by the
second order ODEs presented in the Euler–Lagrange form:

d
dt

∂K
∂q̇j
− ∂K

∂qj
=

∂Π
∂qj

+ Qj (j = 1, · · · , n),

where K, Π are the kinetic and potential energies of the system, respectively, and Qj represent the
generalized non-potential forces. The dynamics of such a system in the vicinity of equilibrium is
described by linearized equations:

Mẍ + (D + G)ẋ + (K + N)x = 0, (2)

which is often referred to as the MDGKNsystem [12,13]. The symmetrical matrices M, D, K stand for
the inertia, dissipative, and stiffness matrices, respectively, and the skew-symmetric ones G, N are
associated with gyroscopic and non-conservative positional or circulatory forces.

A “strange” property of some non-conservative systems is that the influence of damping can
make the system unstable. This property is often referred to as Ziegler’s paradox [14], since adding
a viscous damping to the joints of a double pendulum subjected to the follower force destabilizes
the system. After the publication of Ziegler in 1952, investigations of the destabilizing effect of
damping have attracted the attention of numerous researchers [15–20] and are continued to this
day [5,21,22]. Furthermore, an additional interesting feature of the “reciprocal” damping effect follows:
when adding a damping to unstable non-conservative system, this yields stabilization of an unstable
system (in the Lyapunov sense), and the further increasing of damping leads back to instability [23].
A general stability problem of equilibrium of different mechanical non-conservative (both dissipative
and circulatory) systems was studied in numerous papers [12,13,24–26]. Reviews of the problem
for dissipative systems may be found in the works of Bolotin [27], Langthjem and Sugiyama [28],
the monograph of Kirillov [11], and the recent work by Bigoni and Kirillov [5].

However, in our study, we shall focus on the undamped non-gyroscopic systems of the MKN-type
(which are reversible systems). The eigenvalues of such a system are symmetrically located on the
complex plane with respect to the imaginary axis; thus, stability is possible only if all of them are
situated on this axis. The MKN systems were studied in works [29–34]. Since the matrix M is positive
definite and symmetric, there exists [35,36] a non-singular transformation, which transforms this
system to the IK0N form, where I is an identity matrix and K0 has a diagonalized form. For this reason,
some authors [32–34] consider the IK0N systems. Though this simplification is justified from the
theoretical point of view, often the elements of matrices are functions of physical parameters, and such
a reduction is not of great utility. We shall use this form, as well as the more general form MKN below.

The paper is organized as follows. Section 2 describes three main approaches to the study of the
stability problem of the linear circulation systems. Section 3 deals with a multi-parameter system with
three degrees of freedom. To find the conditions of stability, the approaches described in Section 2 are
used. Their advantages and disadvantages are compared. As an example, we consider the problem
of a three link pendulum to which a tracking force is applied. Section 4 examines the special case
where the system has multiple roots. Such systems are found in applications, and often, the influence
of an arbitrarily small circulation force leads to the instability of the motion. In addition, for systems
of high dimensionality, the determination of the stability conditions by a standard procedure may
be associated with serious computational difficulties. A theorem is proven, which makes it possible
to simply find sufficient conditions for the flutter instability and to detect “dangerous” zones in the
system parameter space. Illustrative examples for systems with four and five degrees of freedom are
given. Section 5 discusses the influence of nonlinear terms of the differential equations of motion on the
system dynamics in the context of the conditions of the above theorem. It is noted that for a nonlinear
system, the presence of a positive Lyapunov exponent does not necessarily lead to chaotic behavior.
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Although the motion is unstable in the Lyapunov sense, it can however be bounded, which can prove
to be acceptable enough in engineering applications.

2. Formulation of the Problem

The non-conservative undamped linear systems are mostly presented in the following form:

Mẍ + (K + N)x = 0 (3)

where M and K are positive definite symmetric real square matrices, N is real skew-symmetric,
and x ∈ Rn represents a state vector. In order to underline the absence of damping, such a system
is called an undamped non-conservative or circulatory system. Because 3 is a linear autonomous
ODE system, its characteristic polynomial f (λ) has order 2n and contains only even degrees of λ.
Consequently, the system (3) is stable if all roots of the polynomial:

f (Λ) = anΛn + an−1Λn−1 + · · ·+ a1Λ + a0 (4)

are real and negative, Λ = λ2. The polynomial (4) is referred to as the reduced characteristic polynomial
related to (3).

Three main cases are possible:
(1) The system is marginally or weakly stable (Lyapunov stability) if all solutions x(t) of (3) are

bounded for t ∈ [0,+∞). This means that every eigenvalue λj is on the imaginary axis and semi-simple
(there are s linearly independent eigenvectors associated with the eigenvalue of multiplicity s);

(2) The system (3) is unstable by flutter (or oscillatory unstable) if at least one of the eigenvalues
λj is complex with the nonzero real part (there exists an oscillating motion with exponentially
growing amplitude);

(3) The system (3) is unstable by divergence (or statically unstable) if all of the Λ are real and at
least one of them is real positive (there is an aperiodic, exponentially growing motion).

The negativeness of the roots Λj(j = 1, · · · , n) may be validated with the help of Routh–Hurwitz
or Lienard–Chipard criteria, and the absence of complex roots may be detected by at least three
approaches. Below, we give their brief description.

The first approach will be referred to as the DM-approach and is based on analysis of the so called
“discriminant matrix” [30,37].

Definition 1. The discriminant matrix (in [37], the term “discrimination matrix” is used) of the polynomial
(4) is the square 2n× 2n matrix of the following form:

D =



an an−1 an−2 · · · a0 0 · · · 0
0 nan (n− 1)an−1 · · · a1 0 · · · 0
0 an an−1 an−2 · · · a0 · · · 0
0 0 nan · · · 2a2 a1 · · · 0
· · · · · · · ·
0 · · · 0 an an−1 an−2 · · · a0

0 · · · 0 0 nan (n− 1)an−1 · · · a1


. (5)

Definition 2. The sequence {D1, D2, · · · , Ds}, where Dj(j = 1, · · · , s) is the leading principal minor (upper
left diagonal minor) of order 2j, is called a discriminant sequence of the polynomial (4) (minors Dj sometimes are
called “sub-discriminants” or “principal sub-resultants of f (λ) and f (λ)”).

Theorem 1. [29,37]. Given a polynomial f (Λ) with real coefficients, a necessary and sufficient condition for
the polynomial to have only real roots is that the elements of the discriminant sequence are all non-negative
Dj ≥ 0, j = 1, · · · , n.
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The second approach (B-approach [31,32]) is connected with consideration of the quadratic form
xτ Px, where:

P =


n p1 p2 · · · pn−1

p1 p2 p3 · · · pn

p2 p3 p4 · · · pn+1

· · · · ·
pn−1 pn pn+1 · · · p2n−2

 , pm = (−1)mTr(K + N)m, m = 1, · · · , 2n− 2.

Note that the elements pj are connected with the coefficients of f (Λ) by the following formulas:

pj = −(pj−1an−1 + · · ·+ p1an−j+1 + jan−j), j = 1, · · · , n. (6)

Theorem 2. (Bulatovic [33]). (a) The system (3) is spectrally stable (zero values for Λ are allowed) iff P ≥ 0,
and aj ≥ 0, j = 1, · · · , n.

(b) The system (3) is unstable by divergence iff P ≥ 0, and ∃aj < 0.
(c) The system (3) is unstable by flutter iff xτ Px, can take negative values.

The third approach (G-approach [35]) is based on the use of a catalecticant matrix (Hankel matrix)
of a special kind. Suppose that numbers α1, α2, · · · , αq are distinct roots of the polynomial (4) with
multiplicities n1, n2, · · · , nq (n1 + n2 + · · ·+ nq = n) :

f (Λ) = an(Λ− α1)
n1(Λ− α2)

n2 (Λ− αq)
nq .

Introducing the Newton sums:

sk =
q

∑
j=1

njα
k
j (k = 0, 1, 2, · · · ),

let us compose the matrix into the following form:

S =


s0 s1 s2 · · · sn−2 sn−1

s1 s2 s3 · · · sn−1 sn

s2 s3 s4 · · · sn sn+1

· · · · · ·
sn−1 sn−2 sn−3 · · · s2n−3 s2n−2


n×n

. (7)

The elements of matrix S are connected with the coefficients of f by Newton recurrence relations:

s0 = n, s1 = − an−1

an
, sk = −

1
an

(an−1sk−1 + an−2sk−2 + · · ·+ an−k+1s1+

+ an−kk) (k ≤ n), sk = −
1
an

(an−1sk−1 + an−2sk−2 + · · ·+ a0sk−n) (k > n). (8)

For example, for n = 3, these formulas take the form (with a3 = 1):

s0 = 3, s1 = −a2, s2 = −(a2s1 + 2a1) = a2
2 − 2a1, s3 = −(a2s2 + a1s1 + 3a0) =

= −a3
2 + 3a1a2 − 3a0, s4 = a4

2 − 4a1a2
2 + 4a2a0 + 2a2

1. (9)

Theorem 3. (Gantmakher [35]). (A) The number of roots of polynomial (4) different from each other is equal to
the rank of the matrix S. (B) The number of distinct real roots of this polynomial is equal to the signature of the
real quadratic form with matrix S.
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For application purposes, the following corollary is helpful:

Corollary 1. The number of real roots of the polynomial (4) (with real coefficients) different from each other is
equal to µS − νS, where µS is the “sign permanence” index and νS is the “sign variability” index (i.e., quantities
of the values with the same sign and changes of the sign, respectively) in the sequence (in fact, the first element
of the sequence is one, and it is followed by sequentially recorded principal minors ∆(j)

S of matrix S till order
2r− 2):

1, s0,

(
s0 s1

s1 s2

)
,


s0 s1 s2 · · · sr−1

s1 s2 s3 · · · sr

s2 s3 s4 · · · sr+1

· · · · ·
sr−1 sr−2 sr−3 · · · s2r−2

 . (10)

Here, r is the rank of the Hankel form:

Sn(x, x) =
n

∑
j=1,k

sjkxjxk, (sjk = skj = sj+k−2)

for polynomial f (λ).

Corollary 2. Polynomial f (λ) has n distinct real roots if and only if r = n, and ∆j
S > 0, j = 2, · · · , n.

3. Main Results: Circulatory System with Three Degrees of Freedom

Let us consider the system (3) with the following matrices:

M = I3, K̃ = diag(k1, k2, k3), Ñ =

 0 n12 n13

−n12 0 n23

−n13 −n23 0

 .

Firstly, we try the B-approach. The coefficients aj are:

a3 = 1, a2 = k1 + k2 + k3), a1 = k1k2 + k1k3 + k2k3 + n2
12 + n2

13 + n2
23,

a0 = k1k2k3 + k1n2
23 + k2n2

13 + k3n2
12. (11)

The expressions for elements pj, according to their definition, are:

p2 = ‖K‖2 − ‖N‖2, p3 = TrK3 − 3TrKN2,

p4 = ‖K2‖2 + ‖N2‖2 − 4‖KN‖2 + 2Tr((KN)2), (12)

where ‖ ∗ ‖ is the Frobenius norm of a matrix ∗, i.e., ‖K‖ =
√

∑n
j,s=1 k2

js.
These formulas give some idea of how the matrices K and N influence the elements pj, and allow

describing stability/instability conditions in terms related to the structure of these matrices (for a 2-DOF
system, such conditions were given in [19,31]). However, when n ≥ 3, for computational purposes,
it is more convenient to express p4 by the coefficients of f (Λ) and after that by p1, p2, p3 according
to Formula (6). Because all coefficients of f (Λ) are positive, Case (b) of Theorem 2 is unachievable,
and the semi-positiveness of matrix P defines which, Case (a) or (c), takes place. With this observation,
we have two expressions to analyze: ∆2 = 3p2 − p2

1 and:

∆3 = detP == −3p2
3 + p3(6p1 p2 −

4
3

p3
1)−

1
6

p6
1 −

7
2

p2
1 p2

2 +
3
2

p4
1 p2 +

1
2

p3
2. (13)
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Obviously, if p2 ≤ 0, then System (3) is unstable. Noting, in addition, that ∆3 may be presented in
the form:

∆3 = −1
3
(3p3 − p1∆2 −

1
9

p3
1)

2 +
1
54

(∆2)
3,

and if ∆2 ≤ 0, then ∆3 ≤ 0 as well. This means that the positiveness of ∆3 implies the positiveness of
∆2, and Case (a) takes place if p2 > 0, ∆3 ≥ 0.

Considering the expression (13) as a polynomial of second order with respect to p3; its positiveness
leads to the following inequalities:

p1 p2 −
2
9

p3
1 −
√

2
18

(3p2 − p2
1)

3/2 < p3 < p1 p2 −
2
9

p3
1 +

√
2

18
(3p2 − p2

1)
3/2,

and requirement p2 > p2
1/3 or:

‖K‖2 − ‖N‖2 − 1
3
(TrK)2 > 0

stands for the necessary condition of stability.
To compare the effectiveness of the B-approach, let us apply the technique of the G-approach.

Taking into account the formulas (9), we get:

∆(2)
S = 2(a2

2 − 3a1), ∆(3)
S = −27a2

0 + a0(18a1a2 − 4a3
2)− 4a3

1 + a2
1a2

2.

Note that ∆(3)
S is a quadratic polynomial on a0 with a negative coefficient. Then, independently

of other coefficients, the necessary condition of the positiveness of ∆(3)
S is the non-negativeness of its

discriminant (with respect to a0): d1 = 16(a2
2 − 3a1)

3 ≥ 0. Because of this fact and taking into account

that a1 > a2
2/3, both ∆(2)

S and ∆(3)
S are negative. This means that there is no possibility of sign sequence

{++−+}. Therefore, if r = 3, consequently d f (discriminant of f (λ)) is not equal to zero, and there
are only two possible sign combinations: {++++} and {++−−}. In the first case, µ = 3, ν = 0,
so f has three distinct real roots. The second case follows as µ = 2, ν = 1, and f has one real root and a
pair of complex conjugate roots.

Eventually, we come to the single condition of stability ∆(3)
S > 0. Substituting the coefficients (11),

we have:
D( f ) = −4(n2

12 + n2
13 + n2

23)
3 + n4

12[3(k1 − k2)
2 − 2(k1 + k2 − 2k3)

2]+

+n4
13[3(k1 − k3)

2 − 2(k1 + k3 − 2k2)
2] + n4

23[3(k2 − k3)
2 − 2(k2 + k3 − 2k1)

2]+

+
1
2

n2
12n2

13[(2k1 − k2 − k3)
2 + 39(k2 − k3)

2] +
1
2

n2
12n2

23[(2k2 − k1 − k3)
2 + 39(k1 − k3)

2]+

+
1
2

n2
13n2

23[(2k3 − k2 − k1)
2 + 39(k2 − k1)

2] + n2
12(k1 − k3)(k2 − k3)[3(k1 − k2)

2−

−(2k3 − k1 − k2)
2] + n2

13(k1 − k2)(k3 − k2)[3(k1 − k3)
2 − (2k2 − k1 − k3)

2]+

+n2
23(k2 − k1)(k3 − k1)[3(k2 − k3)

2)− (2k1 − k2 − k3)
2] + (k1 − k2)

2(k1 − k3)
2(k2 − k3)

2.

The current expression is large enough for direct analysis, though it has a symmetric form
(is invariant toward cyclic permutation of the indexes 1, 2, 3). Suppose that:

k1 < k2 < k3. (14)

Introducing the parameter transformation:

n2
12 =

1
4
‖N‖4 p1

k3 − k1
, n2

13 =
1
4
‖N‖4 q2 − q1

k2 − k1
, k j = k1 +

√
2

4
‖N‖ [b1 + (−1)j+1

√
b2],



Symmetry 2020, 12, 1210 7 of 21

λ =

√
2

4
‖N‖ λ̃, bj−1 ≥ 0, j = 2, 3; b2 ≤ b2

1, (15)

and regarding:

n2
23 =

1
2
‖N‖ − n2

12 − n2
13,

we come to the following expression for discriminant (with respect to λ̃):

D = −27p2
2 +

b1

2
p2(b2

1 − 9b2 + 36)− 1
16

(4− b2)(b2
1 − b2 + 4)2. (16)

Being considered as the quadratic polynomial with respect to p2, discriminant D may be positive
only if expression:

Dp2 = b2
1(b

2
1 − 9b2 + 36)2 − 27(4− b2)(b2

1 − b2 + 4)2 = (b2
1 + 3b2 − 12)3

is positive. Then, the condition D > 0 is equivalent to:

1
108

[b1(b2
1 − 9b2 + 36)− (b2

1 + 3b2 − 12)3/2] < q2 <
1

108
[b1(b2

1 − 9b2 + 36)−

− (b2
1 + 3b2 − 12)3/2], (17)

where parameters b1, b2, q2 are connected to the coefficients of System (3) by Formula (15).
The bounding surfaces from (17) are presented in Figure 1.

Figure 1. Domain of stability in parameters b1, b2, q2.

Finally, when d = 0, the polynomial f has three real roots, i.e., one of multiplicity two, if ∆(2)
S 6= 0

(µ = 2, ν = 0), and of multiplicity three, if ∆(2)
S = 0.

To demonstrate the approach suggested, let us consider an example of a mechanical system.
There are not many systems in the form of (3) with uncertain parameters for n > 2 in the literature
(with the analytical study of stability conditions) [30,38], so in order to underline the key-points,
we take an example from [30].

Example 1. Let us consider a three link pendulum subjected to the follower force. The last has two components:
tangential PF and constant non-tangential PC (Figure 2, non-dissipative case). In the small vicinity of
equilibrium θj = 0, j = 1, 2, 3, the linearized motion equations lead to System (3) with matrices:

M = ml2

 9 7 3
4 4 2
1 1 1

 , K + N =

 k− Pl −Pl Pl(3α− 1)
−k k− Pl Pl(2α− 1)
0 −k Pl(α− 1) + k

 . (18)
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Figure 2. Dynamic model of the system subjected to a follower load (adopted from [30]).

The dimensionless characteristic equation contains two parameters: α and β = Pl/k. By the
help of the MD-approach, the stability domain was obtained, and six expressions a2(α, β), a1(α, β),
a0(α, β), D1(α, β), D2(α, β), D3(α, β) were involved in the process. Using the G-approach, only three
expressions a2, a2a1 − a3a0, and D = D3 are needed. In order to bring some contrast to the results of [30],
we assume that PC = 0 (hence, α = 1), but at the same time, the stiffnesses of the joints k1, k2, k3 differ from one
another. Introducing the dimensionless parameters and time:

β =
Pl
k1

, γ1 =
k2

k1
, γ2 =

k3

k1
, τ =

1
l

√
k1

m
t, (19)

we have the following reduced characteristic polynomial:

f (Λ) = 4λ3 + (2γ1 + 10γ2 + 14− 8β)λ2 + [γ1γ2 + 6γ1 + 19γ2 − 2(γ1 + 3γ2 + 5)β+

+3β2]λ + γ1γ2.

The domain of stability is formed as the intersection of three sets: a2 > 0,

g(β, γ1, γ2) = −24β3 + (122 + 22γ1 + 78γ2)β2 − 4(γ2
1 + 10γ1γ2 + 15γ2

2 + 24γ1 + 84γ2+

+35)β + 2γ1γ2(γ1 + 5γ2) + 12γ2
1 + 108γ1γ2 + 190γ2

2 + 84γ1 + 266γ2 > 0,

and D f > 0 (the corresponding expression is given in Appendix A).
The discriminant is the polynomial of sixth order and does not allow for any analytical reduction.

Nevertheless, the corresponding 3D surfaces are smooth enough, and plotting does not present difficulties.
The results are presented in Figure 3.

With the standard assumption of the equal stiffnesses at the joints k1 = k2 = k3, the value of βcrit ≈ 1.305
(Figure 3). With different values of k j, this value can be markedly increased (up to 1.5 times). The optimal
configuration is when k3 is bigger and k2 is smaller than k1 (see Figure 4).
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Figure 3. Domain of stability for γ2 = 1.

Figure 4. Variation of the stiffness values and their effect on the magnitude of the critical load.

4. Special Case: Multiple Eigenvalues of Matrix K

This section was inspired by the recent publication of F. Udwadia [34], where he generalized
the well-known theorem of Merkin [24]. The last one states that when matrix K has eigenvalue Λ of
multiplicity n, an arbitrary small circulatory force brings flutter instability to the system. In order to
generalize this theorem, as it was pointed out by Udwadia, the commutativity of matrices K and N is
required. Note that the condition of instability in case KN = NK was first obtained by Bulatovic [29].

Definition 3. [34]. Consider an n-by-n block diagonal matrix:

A = diag(A1, A2, · · · , Ak)

in which the s-th (square) diagonal block As has dimensions is by is with i1 ≥ i2 ≥ · · · ≥ ik, and another
n-by-n block diagonal matrix:

B = diag(B1, B2, · · · , Br)

for which the p-th (square) diagonal block Bp has dimensions jp by jp with j1 ≥ j2 ≥ · · · ≥ jr. We shall say that
matrices A and B have the same block diagonal structure if:

k = r, is = jss = 1, · · · , k. (20)

Theorem 4. [34]. Let K = λ1 I1 + λ2 I2 + · · ·+ λk Ik, and T be the orthogonal transformation such that the
diagonal matrix Ω = TτKT has repeated eigenvalues. The matrix N = diag(N1, · · · , Nk) that has the same
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block diagonal structure as Ω and where Nj, j = 1, · · · , k are arbitrary skew-symmetric matrices will always
commute with Ω, and the matrix NT = TNTτ will always commute with K. Arbitrarily small elements in the
matrices Nj will lead to a flutter instability of the system ÿ + (K + NT)y = 0.

Though this result is interesting from a mathematical viewpoint, at first blush, it seems not to be
very helpful in direct applications. The reason is that for the system (3) (as M = I), the requirement
of the same block diagonal structure implies the decomposition of the whole system into unstable
and stable (probably) subsystems. This observation yields the question: Why not consider each
subsystem separately?

However, on second thought, the sense of this result opens the possibility to detect the instability
for non-linear dynamical systems, especially systems of high dimension and/or multi-parameter
ones. Here, the instability of a small (say, k = 2, 3) subsystem as a rule leads to the instability of the
whole system, which may lead to serious reduction of the computational effort. Bearing this idea
in mind, we shall try to introduce some modifications of the above-mentioned result based on the
following way.

Let B = (b1, b2, · · · , bn)τ be a rectangular matrix and bj (j = 1, · · · , n) the rows. We “bisect”
matrix B into two sub-matrices with q and n− q rows, respectively, and shall use the notation Bq, B \ Bq

for them below.
Suppose that system MKN allows the representation:

M = M1
⊕

M2, K = K1
⊕

K2, N = N1
⊕

N2,

where matrices Mj, Kj (j = 1, 2) are square symmetric and positive definite and N, Nj for
skew-symmetric matrices. The dimensions of matrices M1, K1, N1 are equal to l ≤ n, and symbol
“
⊕

” denotes the direct sum of matrices. Let further JM1 be the Jordan normal form of the matrix M1,
i.e., M1 = TM1 JM1(TM1)

−1, where the columns of transformation matrix TM1 are eigenvectors of M1.
If TM1 is chosen in its counterpart orthogonal form, then (TM1)

−1 = (TM1)
τ , and the matrix:

K̃1 = (JM1)
−1/2 Tτ

M1
K1TM1(JM1)

−1/2

is symmetric and positive definite. Consequently, there exists an orthogonal matrix TK̃1
such that

K̃1 = TK̃1
JK̃1

(TK̃1
)τ . The following sufficient condition of instability for system MKN is given by the

following theorem.

Theorem 5. Let the equation det(M1Λ + K1) = 0 have root Λ1 of multiplicity q ≤ l (in other words, matrix
M−1/2

1 K1M−1/2
1 has the eigenvalue (semi-simple) of multiplicity q). Denote by TM1 and TK̃1

orthogonal
matrices, the columns of which are formed by the eigenvectors of the corresponding matrix, and the first q
columns are associated with multiple eigenvalues. Let the matrix equality:

TqN(T \ Tq)
τ = 0, T = Tτ

M1
(JM1)

−1/2 TK̃1
(21)

hold. Then, if:
N?

1 , TqNTτ
q 6= 0, (22)

the system MKN is unstable (flutter instability).

Proof. We remind that as block matrices M1, K1 are symmetric and positive definite, there eigenvalues
determine the transformation matrices TM1 , TK̃1

, and:

M1 = TM1 JM1 (TM1)
−1, K1 = TK̃1

JK1 (TK̃1
)−1,

where JM1 JK1 are Jordan normal forms of those matrices.
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These forms are diagonal, and without loss of generality, we may count left upper cells of
dimension q as containing proportional elements corresponding to eigenvalue Λ1. As matrices
TM1 , TK̃1

are orthogonal, then their inverse matrices are equal to transpose ones; therefore, systems:
M1ẏ + (K1 + N1)y = 0 and:

JM1 ξ̇ + Tτ
M1

(K1 + N1)TM1 ξ = 0, ξ ∈ Rl (23)

are equivalent, i.e., have the identical fundamental matrices. According to the assumption,
we have JK̃1

= Λ1 Iq
⊕

diag(Λq+1, · · · , Λl). Moreover, the linear nonsingular transformation

ξ = (JM1)
−1/2TK̃1

e−Λ1tη leads to the following system:

η̇ + (JK1 −Λ1 Il + Ñ1)η = 0, (24)

and due to condition (21) (N1)q = N?
1
⊕

0q, the equality holds. This means that subsystem:

η̇q + N?
1 ηq = 0 (25)

is separated. Using the Lyapunov function V = ητ
q ηq, one may see that:

dV
dt
|(25)= −ητ

q (N?
1 )

τηq − ητ
q N?

1 ηq = 0,

but because of rankN?
1 6= 0, the system (25) has at least one pair of purely imaginary eigenvalues.

This implies the existence of complex eigenvalues for System (24) and resulting in the flutter instability
of System (3).

Now, the calculation procedure will be explained by the following case study.

Example 2. Consider the system (3) with:

M1 =
1
2


15 −9 0 0
−9 15 0 0
0 0 6 0
0 0 0 6

 , K1 = 2


9 −3 −

√
2
√

2
−3 9 −

√
2
√

2
−
√

2 −
√

2 7 0√
2

√
2 0 5

 ,

N1 =


0 2

√
2n1 n1 − 2n2 −2n1 − n2

−2
√

2n1 0 −n1 − 2n2 2n1 − n2

−n1 + 2n2 n1 + 2n2 0 2
√

2n2

2n1 + n2 −2n1 + n2 −2
√

2n2 0

 , (26)

where n1, n2 are unknown parameters.
The eigenvalues of M1, K1 are 12, 3, 3, 3 and 6, 12, 18, 24, respectively. Since the matrices TM1 , JM1 , K̃1 are:

TM1 =

√
2

2

(
1 1
−1 1

)⊕
I2, (JM1)

−1/2 = diag(
1
2

, 1, 1, 1), K̃1 = 2


3 0 0 0
0 6 −2 2
0 −2 7 0
0 2 0 5

 ,

then:

TK̃1
=

1
3


3 0 0 0
0 2 1 2
0 1 2 −2
0 −2 2 1

 , Tτ =

√
2

6


3
2 2 1 2
− 3

2 2 1 2
0

√
2 2

√
2 −2

√
2

0 −2
√

2 2
√

2
√

2

 .
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Finally, because:(
3
2 − 3

2 0 0
2 2

√
2 −2

√
2

)
N1

(
1 1 2

√
2 2

√
2

2 2 −2
√

2
√

2

)τ

=

(
0 0
0 0

)
,

the equality (21) is satisfied, and to verify the condition (22), we get:(
3 −3 0 0
2 2

√
2 −2

√
2

)
N1

(
3 −3 0 0
2 2

√
2 −2

√
2

)τ

= 54
√

2n1

(
0 1
−1 0

)
.

According to the statement of Theorem 5, if n1 6= 0, the system (26) is unstable, independently of the value
of n2.

Remark 1. As follows from the formulation of the theorem, it gives the sufficient condition of instability.
If the condition (22) is not satisfied, the stability of the system depends on the other components of matrix N.
For instance, in Example 2, the roots of f (Λ) are:

Λ1,2 = −1±
√

2
4

in1, Λ3,4 =
1
2
(−5±

√
1− 2n2

2),

and if n1 = 0, the system (26) is stable when n2
2 < 1/2 (is spectrally stable when

n2 = ±
√

2/2).

Example 3. We consider one more example, which differs from the previous one. System (3) has a high
dimension, and to avoid unnecessary conversions, we take M = I. Matrices K, N are:

K =


16 −4 0 0 −4
−4 21 −5 3 −1
0 −5 17 −3 5
0 3 −3 33 −3
−4 −1 5 −3 21

 , N =


0 0 n13 n14 0
0 0 0 n24 −n13

−n13 0 0 n34 0
−n14 −n24 −n34 0 n45

0 n13 0 −n45 0

 .

Even in this case, when matrices M, K are known, the dimension n = 5, and more importantly, the presence
of five uncertain parameters may cause a serious obstacle for finding the stability conditions. The potential system
has two pairs of multiple eigenvalues, and from a common viewpoint, it raises a query about the existence of a
such matrix N (even with ‖N‖ � 1), which would not bring the flutter instability. Again, the direct analysis of
the characteristic polynomial is not so optimistic, i.e., the algorithm described in Section 3 still works, but the
expressions calculated are very bulky. In order to omit the problem occurring, we try to employ Theorem 5.

The eigenvalues and eigenvectors of matrix K are as follows:

Λ1,2 = 12, β1 = (1, 1, 1, 0, 0)τ , β2 = (1, 0,−1, 0, 1)τ , Λ3.4 = 24, β3 = (−1, 1, 0, 0, 1)τ ,

β4 = (1,−2, 1, 1, 0)τ , Λ5 = 36, β5 = (0,−1, 1,−3, 1)τ .

As matrix K̃ = K has two different multiple eigenvalues, we have to choose one of them to determine
block-matrix K1. Let this matrix correspond to Λ1 = 12, (actually, there is no difference; the choice of
Λ = 24 leads to the same conditions), then with transformation matrix T and taking into account that q = 2,
the equality (21) of the theorem imposes the following restrictions n34 = −n14 − n24, n45 = 2n14 + n24,
and hence, the condition (22) takes the form:

TqNTτ
q = n13

(
0 −1
1 0

)
.
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Thereby, if n13 6= 0, the system (MKN) is unstable (even with an infinitely small magnitude of circulatory
force). However, if n13 = 0, components n14, n24 are responsible for stability or instability. As the system is
decomposed, the characteristic polynomial is reduced to third order form:

λ3 + 7λ2 + [16 + 3(n14 + n24)
2]λ + 12 +

51
4

n2
14 + 12n14n24 + 6n2

24.

Its coefficients are positive, and its discriminant:

D =
16
3
[−4608n6

14 − 13824n5
14n24 + (543− 20736n2

24)n
4
14 + (816− 18432n2

24)n
3
14n24−

−(16− 600n2
24 + 10368n4

24)n
2
14 + (192− 3456n2

24)n14n3
24 + 48n4

24 − 576n6
24]

is positive in the domains shown in Figure 5. This result can be interpreted in the following way: when the
potential system has multiple eigenvalues, the circulatory forces may contain “harsh” components, which break
the stability no matter how small they are, and “soft” components are “dangerous” only if they are high enough.

Figure 5. Stability domains for Example 3.

5. Nonlinear Systems with Unstable Equilibrium

5.1. Some General Remarks

Theorem 5 leads to the following remarkable consequence: if the linear part of the nonlinear
dynamical system:

Mẍ + (D + G)ẋ + (K + N)x = F(x, ẋ)

is decomposed into unstable and stable (even asymptotically stable) subsystems and these subsystems
are connected by nonlinear terms, then the equilibrium of the system is unstable. Moreover, the linearly
stable component may bring more “discords” into nonlinear dynamics. Let us explain this by
employing the following example:

M = I4, K = diag(1, 1, 2, 3), N = n1

(
0 1
−1 0

)⊕
n2

(
0 1
−1 0

)
, (27)

D = 0, G = 0, F1 = (1.2x1x4,−0.5x2
3,−n2x2x2

4, n2x1x2
3)

τ .
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The linear part of System (27) is taken from Example 2 (with n1 6= 0), so it is “semi-stable”,
i.e., it consists of unstable and stable subsystems, and their eigenvalues are presented in Remark 1.
To be able to perform numerical integration of the equations considered, we take n1 = 0.1, n2 = 0.3,
then λ1,2,3,4 = ±0.0499± 1.0012i, λ5,6 = ±1.7029i, λ7,8 = ±1.4491i. If the initial perturbations are
sufficiently small, then for a period of time, the motion is regular. For System (27) with initial values
x(0) = (0.001, 0.03,−0.001, 0.001)τ , ẋ(0) = (0.01, 0.012, 0.001, 0.02)τ , this interval is approximately
estimated as [0, 110]. The maximal Lyapunov exponent is not very big (≈0.05), and the behavior with
respect to x1, x2 is similar to linear instability (flutter). However, at some point, tcrit ≈ 111, the system
dynamics very rapidly becomes chaotic, and in a few seconds, the trajectory whirls away (leaves the
visible limits; and the computation is interrupted). The clear sign of chaotic behavior is the fact that
the very small change of even one initial value (x1(0) from 0.001 to −0.001) leads to the divergence of
trajectories (see Figure 6).

Figure 6. Projection of the phase trajectory: (a) x1(0) = 0.001; (b) x1 is changed to −0.001.

However, in applied research, Lyapunov’s instability is not always a “desperate” case. Often,
for reliable operation of the device, the growth of solutions is allowed in some limits. In this case,
even the positive Lyapunov exponent does not necessarily lead to the failure of the system. In order to
illustrate the latter statement, let us consider the following system:

ẍ1 + x1(1 + x2
2) + nx2 = 0, ẍ2 − nx1 + x2(1 + x2

1) + nx2 = 0,

ẍ3 + dẋ3(0.48− x2
1 − x2

2) + 2x3(1− x2
1) = 0. (28)

Its equilibrium x = 0, ẋ = 0 is unstable; however, numerical simulations show that the motions
are bounded, if the initial perturbations are small enough (see Figures 7 and 8). Furthermore,
the behavior of component x3 is remarkable. Contrary to Example 2, the motion is “almost”
asymptotically stable with respect to this coordinate and its velocity. Speaking more strictly, it is
unstable, but tends to zero as time increases. Note that time to time, there appear short intervals where
the amplitude increases during two-three oscillations more then 50 times; nevertheless, it very quickly
returns to small values (Figure 9).

Figure 7. Time history for “unstable” components (d = 1.5, n = 0.12).
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Figure 8. Projections of the phase trajectory: boundedness of solutions (t ∈ [0, 400]).

Figure 9. Unsteady vanishing of component x3.

5.2. A Case Study: The Bounded Solutions of a 2-DoF System with Unstable Origin

Let D be some domain of Rm containing the origin. Consider an ODE system:

dx
dt

= F(t, x), x(t0) = x0. (29)

We assume that the function F is continuous, and the Cauchy problem for (29) has a unique
solution x(t, t0, x0) that continuously depends on the initial values.

For any t ∈ I = [t0,+∞), we consider the domains D1(t), D2(t) containing the origin
x = 0, such that their boundaries ∂D1, ∂D2 are continuous functions of time and ∂Dl(t) ⊂ D2(t).
The following statement holds.

Lemma 1. [39]. Assume that there exists a continuously differentiable function U(t, x) : I × D2 → R and a
continuous function U0(t, x) ≤ U(t, x) such that:

(A) For any t ≥ t0, the function U(t, x) is bounded for x ∈ ∂D1(t);
(B) for any (t, x) ∈ I × D2(t)\D1(t), the time derivative of the function U(t, x) with respect to system

(1) is non-positive;
(C) for any pair tl , t2(t2 > t1) from I, the following inequality holds:

sup
x∈∂D1(t1)

U(t1, x) < inf
x∈∂D2(t2)

U0(t2, x).

Then, for any t0 ∈ I, the premise x0 ∈ D1(t0) implies that x(t, t0, x) ∈ D2(t).

This statement may be applied for different purposes: to prove the stability (marginal or
asymptotic), the boundedness of the solutions, the estimation of the rate of the asymptotic behavior, etc.

To illustrate it, let us consider the following system:

ẍ1 + hẋ1x2
1 + x1(k1 − k2x2

1) + nx2 = 0, ẍ2 + hẋ2x2
2 − nx1 + x2(k1 − k2x2

2) = 0, (30)
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Here, h, k1, k2, n are some positive dimensionless parameters. System (30) may be considered
as the equations of motion of two identical non-linear oscillators connected due to the influence of
circulatory force. This system has a single equilibrium x = 0, ẋ = 0, which is asymptotically stable if
n = 0 and is unstable for any arbitrary small non-zero value of n. The eigenvalues of the linearized
system are located at the tops of the square in the complex plane; their values are:

λ1,2 =
1√
2R

[n± i(k1 + R)], λ3,4 =
1√
2R

[−n± i(k1 + R)], R =

√
k1 +

√
k2

1 + n2. (31)

Thus, the maximal Lyapunov exponent is equal to n/
√

2R, and the origin is exponentially unstable.
However, if the ratio n/k1 is small enough, then all trajectories incipient in the vicinity of the origin
are bounded. To prove this fact, we shall use the lemma.

First of all, we realign the variables, parameters, and time according to formulas:

xj =

√
k1

k2
x̃j (j = 1, 2), h =

k2√
k1

h̃, t =
t̃√
k1

. (32)

This allows formally putting the values of k1 and k2 in Equation (30) equal to one (for convenience,
the symbol “∼” is omitted below). As the system considered is autonomous, we shall seek the
polynomial positive definite auxiliary function as the sum of the quadratic part and the form of fourth
order: U(x, ẋ) = U(2) + U(4). Obviously, it is impossible to achieve the negative definiteness of U̇(2)

(the presence of a positive Lyapunov exponent); thus, we aim for the negativeness of U̇(4) to satisfy
Condition (B) of the lemma. The function U is taken in the following form:

U(x1, x2, ẋ1, ẋ2) = x2
1 + x2

2 + ẋ2
1 + ẋ2

2 −
1

16
[3ẋ4

1 + 6x2
1 ẋ2

1 − 5x4
1 + 3ẋ4

2+ (33)

+6x2
2 ẋ2

2 − 5x4
2 − 4h[ẋ1x1(ẋ2

1 + x2
1) + ẋ2x2(ẋ2

2 + x2
2)],

and its time derivative with respect to System (30) is:

U̇ = 2n(ẋ1x2 − ẋ2x1)−
1
4

h[(ẋ2
1 + x2

1)
2 + (ẋ2

2 + x2
2)

2 + nx1x2(x2
1 − x2

2 − 3ẋ2
1 + 3ẋ2

2)]+

+
3
4

n[ẋ1x2(ẋ2
1 + x2

1)− ẋ2x1(ẋ2
2 + x2

2)]−
1
4
[hx2

1(3ẋ4
1 + 6ẋ2

1x2
1 − x4

1)+ (34)

+hx2
2(3ẋ4

2 + 6ẋ2
2x2

2 − x4
2) + (3− h2)(ẋ1x5

1 + ẋ2x5
2) + (3 + h2)(ẋ3

1x3
1 + ẋ3

2x3
2)]

The upper bound for derivative U̇(x, ẋ) may be derived in the form:

U̇ ≤ Ũ(r1, r2) , −
1
4
{−nr1r2(4 + r2

1 + r2
2) + h(r4

1 + r4
2)− (35)

−3
4

np1(r2
1 + r2

2)
2 − [4h +

√
h4 + 21h2 + 36 + p2](r6

1 + r6
2)}.

Here, rj =
√

x2
j + ẋ2

j (j = 1, 2), p1 ≈ 1.4, and the value of p2(h) depends on parameter h and is
defined as:

p2(h) = h max
ξ∈R

ξ6 − 15ξ4 + 15ξ2 − 1 + 2hξ(3ξ4 − 10ξ2 + 3)
(ξ2 + 1)3 . (36)

The surface p = p2(h, ξ) is presented in Figure 10.
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Figure 10. The view of the surface p = p2(h, ξ).

From the other side, the function U satisfies the following inequalities:

U0 , r2
1 + r2

2 −
1

16
(
√

h2 + 1 + 4)(r4
1 + r4

2) ≤ U(x, ẋ) ≤ r2
1 + r2

2

− 1
16

(
√

h2 + 1 + 4)(r4
1 + r4

2) , U1.
(37)

In the vicinity of the origin of the first quadrant of the plane Or1r2, the boundary of the set
Ũ(r1, r2) = 0 is formed by two branches (solid lines in Figure 11a). The smaller one bounds the domain
Ũ > 0. Thus, we should choose the domain D1 in such a way that ∂D1 belongs to domain Ũ ≤ 0.
It can be taken as U1(r1, r2) ≤ α(h, n), where α is some constant number. Then, the boundary of D2

may be given by condition U0 = α + ε, where ε is an arbitrary small positive number. Therefore,
all conditions of the lemma are fulfilled, and all trajectories starting in D1 are limited by the threshold
of ∂D2. For values h = 4, n = 0.1, these domains are presented in Figure 11.

This conclusion is confirmed by numerical integration of System (30). For different starting points
of the phase space, the trajectories go to the limit cycle (Figure 12). In fact, the estimation shown in
Figure 11 is accurate enough.

Figure 11. The domains where all trajectories starting in D1 are limited by the threshold of ∂D2.
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Figure 12. The limit cycle of the trajectories for different starting points of the phase space.

6. Concluding Remarks

In this paper, we discussed some stability problems for circulatory dynamical systems. Although
existing analytical methods allow us to solve the problem (obtaining stability conditions in the closed
form) in the case of high order systems with uncertain parameters, these conditions may turn out to be
too cumbersome for analysis. Therefore, it is advisable to use optimized algorithms from the point of
view of avoiding “unnecessary” computational procedures, which allows reducing the computation
time and, possibly, obtaining stability conditions in a simpler form. Some of these procedures were
discussed in Section 2 and tested in Section 3. In Section 4, a case of multiple eigenvalues was
studied. It is interesting from a theoretical viewpoint as well, as this case often occurs in different
applications. A sufficient condition of instability was formulated. In Section 5, some interesting
examples of nonlinear dynamics were considered. Then, it was demonstrated that the flutter instability
of the linearized system may lead to various results, namely the motion may become chaotic with
overwhelming growth of the amplitude and may be bounded. Actually, it may be even asymptotically
stable with respect to part of the variables. However, the rigorous study of this question is based
on the use of Lyapunov functions for a nonlinear multi-parameter system, which leads to extremely
complicated transformations and requires a separate study.

The future research will consider the problem of free flexural vibrations and dynamic loads in
an elastic rod with stepwise-changing stiffness, as well as the application of the stated results to the
hemivariational principles such as damage [40,41].
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Appendix A

Formulas for the G-approach (Section 2), n = 4 :

s1 = − a3

a4
, s2 =

1
a2

4
, s3 = − 1

a3
4
(a3

3 − 3a2a3a4 + 3a1a2
4), s4 =

1
a4

4
(a4

3 − 4a2a2
3a4+
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+4a1a3a2
4 + 2a2

2a2
4 − 4a0a3

4), s5 = − 1
a5

4
(a5

3 − 5a2a3
3a4 + 5a1a2

3a2
4 + 5a2

2a3a2
4 − 5a0a3a3

4−

−5a1a2a3
4), s6 =

1
a6

4
(a6

3 − 6a2a4
3a4 + 6a1a3

3a2
4 + 9a2

2a2
3a2

4 − 6a0a2
3a3

4 − 12a1a2a3a3
4−

2a3
2a3

4 + 6a0a2a4
4 + 3a2

1a4
4), ∆2 =

1
a2

4
(3a2

3 − 8a2a4), ∆3 =
2
a4

4
(−3a1a3

3 + a2
2a2

3

−6a0a2
3a4 + 14a1a2a3a4 − 4a3

2a4 + 16a0a2a2
4 − 18a2

1a2
4),

∆4 =
1
a6

4
(−192a2

0a1a3a2
4 − 4a0a3

2a2
3 + a2

1a2
2a2

3 + 144a2
0a2a2

3a4 − 6a0a2
1a2

3a4+

+18a3
1a2a3a4 + 144a0a2

1a2a2
4 − 4a3

1a3
3 − 27a2

0a4
3 + 16a0a4

2a4 − 4a2
1a3

2a4 − 128a2
0a2

2a2
4+

+18a0a1a2a3
3 − 80a0a1a2

2a3a4 + 256a3
0a3

4 − 27a4
1a2

4.

The discriminant for Example 1:

D( f ) = 4β6 − 192β5(γ1 + 6γ2 + 8) + 4β4(25γ2
1 + 366γ1γ2 + 945γ2

2 + 406γ1 + 2418γ2+

+1801)− 16β3(3γ3
1 + 47γ2

1γ2 + 261γ1γ2
2 + 369γ3

2 + 25γ2
1 + 554γ1γ2 + 1629γ2

2 + 421γ1+

+2067γ2 + 1135) + 8β2(2γ4
1 + 27γ3

1γ2 + 192γ2
1γ2

2 + 579γ1γ3
2 + 450γ4

2 + 18γ3
1 + 437γ2

1γ2+

+2640γ1γ2
2 ++4641γ3

2 + 32γ2
1 + 2151γ1γ2 + 7016γ2

2 + 2322γ1 + 8473γ2 + 2450)−

−16β[γ1γ2(γ
3
1 + 9γ2

1γ2 + 47γ1γ2
2 + 75γ3

2) + 6γ4
1 + 62γ3

1γ2 + 415γ2
1γ2

2 + 1196γ1γ3
2+

+1425γ4
2 − 30γ3

1 + 156γ2
1γ2 + 1541γ1γ2

2 + 3477γ3
2 + 138γ2

1 + 1294γ1γ2 + 3667γ2
2+

+1470γ1 + 4655γ2] + 4γ2
1γ2

2(γ
2
1 + 6γ1γ2 + 25γ2

2) + 2γ1γ2(2γ3
1 + 8γ2

1γ2 + 51γ1γ2
2 − 25γ3

2)+

+36γ4
1 + 372γ3

1γ2 ++2454γ2
1γ2

2 + 6858γ1γ3
2 + 9025γ4

2 − 360γ3
1 − 1572γ2

1γ2 − 4208γ1γ2
2−

−2166γ3
2 + 1764γ+

1 28428γ1γ2 + 17689γ2
2.
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