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A B S T R A C T

The article deals with the problem of the stability of the equilibrium of a double pendulum
under the action of a follower force. The latter is assumed to be imperfect, that is, the
direction of its action does not coincide with the axis of the second link of the pendulum.
The relationships between the masses of the pendulums, the stiffnesses of the hinges, and the
damping coefficients are assumed to be arbitrary. Conditions of stability in the absence of
damping and for a weakly damped system are obtained and analyzed. These conditions are
formulated for the linearized motion equations in the form of an estimate of the dimensionless
parameter corresponding to the value of the critical load. The influence of damping ratio and
stiffness ratio on the permissible value of this parameter has been studied. It is shown that near
the boundary of the region of flutter instability, the value of the critical load can be increased
by decreasing the stiffness of the hinge at the attachment point of the pendulum.

. Introduction

The history of research on the stability of columns subjected to compressive forces dates back to Euler, who analyzed the static
uckling of elastic compressed rods and formulated a theory of buckling, which can be regarded as the first approximation in solving
he stability problem of lightweight load-bearing structures. E. L. Nikolai was, in all likelihood, the first who, in the first half of the
ast century, considered the problem of the stability of an elastic system loaded with the so-called follower forces, which change
heir direction in accordance with the current configuration of the system on which they act. The problem was updated and attracted
uch attention of scientists in the field of structural mechanics in the second half of the last century, when flutter was theoretically
iscovered as a result of the action of such forces (Bolotin [1]).

In 1952, Hans Ziegler published an article [2], which is now considered a classic and widely known in the community of
echanical engineers and specialists in dynamics. Ziegler investigated the flutter problem in aerodynamics and considered the
odel as a double pendulum fixed at one end and loaded with a tangential load at the other end. He discovered a phenomenon
ith an unexpected property: there is a gap between the stability regions in the case of vanishingly small damping compared to the

ase when there is no damping. (This effect is a classic example of Hopf bifurcation in a dynamical system.) This problem attracted
lot of attention of scientists in the field of structural mechanics in the second half of the last century, and numerous studies were
evoted to the theoretical analysis of the flutter arising from the action of follower forces [3–21].
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Koval’chuk and Lobas [22] analyzed the influence of the orientation parameter of the behavior of the pendulum including a
imple zero eigenvalue in the linearization matrix. Lobas [17] derived differential equation governing the plane-parallel motion of an
nverted multilink pendulum with an asymmetric follower force acting at the elastically restrained upper end. The nonlinear springs
nd dissipation feature were considered. Lobas and Koval’chuk [23] investigated stability of the vertical pendulum equilibrium with
oth linear and nonlinear elastic elements in the critical case. Lobas and Ichanskii [16] studied two limit cycles one stable and one
nstable of a double pendulum under a follower force action. Their study was extended to include analysis of the limit cycles of a
ouble pendulum with linear and nonlinear springs subjected to a follower force based on the numerical simulations.

In addition, the problem of destabilizing the equilibrium of a non-conservative mechanical system under the action of low friction
as reflected in many applied problems. Among them are: vibrations caused by friction [24–27], squealing vibrations in drum
rakes [28], the Levitron system [29], aero-elastic systems [30], the influence of rocket thrust as a source of tracking load acting
n a beam [31] and others.

A significant part of the research is devoted to the study of the Ziegler model, its various generalizations and modifications. As
he main results of the last decade, we note the following articles.

The article [32] concerns the destabilization paradox occurring in damped circulatory systems (both discrete and continuous).
he concepts of ‘‘sensitivity to damping’’ and ‘‘degree of nonconservativeness’’ have been discussed by referring to the generalized
eck problem.

In paper [33] authors presented some new results using different methods of proof on the influence of the damping terms which
ay be applied for avoidance of self-excited vibrations in circulatory systems.

The work [34] studies the stability of so-called MDGKN system (i.e. the linear system where matrices M, D, G, K, N are
ssociated with inertia, damping, gyroscopic, potential and circulatory forces respectively) with two degrees of freedom with regard
o infinitesimally small, incomplete, and indefinite damping matrices as well as the role of gyroscopic terms and the spacing of the
igenfrequencies.

Luongo et al. [35] studied the destabilizing effect of damping on both linear and nonlinear behavior of the Ziegler column. An
lgorithm based on the Multiple Scale Method is developed to investigate the post-critical behavior of the system.

Abdullatif et al. [3] discussed the phenomenon of three damping-induced stability transitions in non-conservative systems. It is
hown that the addition of damping can cause non-conservative systems to become stable, then unstable, then stable again at the
ame value of the non-conservative forcing variable.

Kirillow and Bigoni [36] presented an overview of results and methods of stability theory that are specific for nonconservative
pplications. Various topics are discussed: flutter and divergence, reversible- and Hamiltonian–Hopf bifurcation, dissipation-induced
nstabilities, destabilization paradox, influence of structure of forces on stability and others.

D’Annibale and Feretti [37] discussed the effects of linear damping on the post-critical behavior of the Ziegler’s column. The
nalysis of nonlinear behavior of a generically damped column based on the Multiple Scale Method is presented. Asymptotic results
btained have been validated with numerical solutions of the exact equations of motion.

The aim of our study is to obtain and analyze stability conditions for equilibria of the double pendulum with imperfect (non-
angential) follower force for uncertain values of mass, damping and stiffness ratios. The cases of undamped and weakly-damped
ystems are considered. The possibility of increasing the value of critical load by varying the damping and stiffness ratios is discussed.
n particular, it is shown that in the vicinity of the boundary of flutter instability zone in parametric space this value can be increased
y softening the spring at the base of the pendulum.

In the present paper we analyze the stability conditions for linearized model. The main focus is on assessing the influence of
ystem parameters (mass, damping and stiffness ratios and asymmetry index) onto the value of critical load.

The article is organized in a following way. In Section 2 the problem statement is formulated and some preliminary simplifications
re given. In Section 3, the conditions for the stability of the system in the absence of damping in hinges of the pendulum are obtained
nd analyzed. In Section 4, the case of weak damping is considered and conditions for the asymptotic stability of the equilibrium
nder study are found. Section 5 discusses the influence of damping ratio and stiffness ratio on the value of critical load, and presents
he results of numerical investigations.

. Statement of the problem

Consider the double pendulum shown in Fig. 1, consisting of two rigid weightless rods of equal length 𝐿, carrying the
oncentrated masses 𝑚1 and 𝑚2. The rods are connected by a viscoelastic joint, and the configuration of the system is determined
y the two angles 𝜑1 and 𝜑2 formed between the vertical axis and each of the two rods, respectively. The follower force is applied
o the free end. (The case 𝑚1 = 2𝑚2, 𝑐1 = 𝑐2 corresponds to Ziegler’s standard model [2].)

The kinetic energy and potential energy of the system have the following forms

𝐾 = 1
2
𝑙2[(𝑚1 + 𝑚2)𝜑̇2

1 + 2𝑚2𝜑̇1𝜑̇2 cos(𝜑2 − 𝜑1) + 𝑚2𝜑̇
2
2], (1)

𝛱 = 1
2
[𝑘1𝜑2

1 + 𝑘2(𝜑1 − 𝜑2)2], (2)

and the non-conservative forces are

𝑄 = −(𝑑 + 𝑑 )𝜑̇ + 𝑑 𝜑̇ 𝑃 𝑙[𝛼 sin𝜑 + (1 − 𝛼) sin(𝜑 − 𝜑 )], 𝑄 = 𝑑 (𝜑̇ − 𝜑̇ ) + 𝑃 𝑙𝛼 sin𝜑 . (3)
2

1 1 2 1 2 + 1 1 2 2 2 1 1 2
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Fig. 1. The double pendulum with follower force.

The equations of the motion may be presented in Lagrange form
𝑑
𝑑𝑡

𝜕𝐿
𝜕𝜑̇𝑗

− 𝜕𝐿
𝜕𝜑𝑗

= 𝑄𝑗 , 𝐿 = 𝐾 −𝛱, 𝑗 = 1, 2. (4)

Introducing the dimensionless parameters and time according to formulas

𝜇 =
𝑚1
𝑚2
, 𝑑𝑗 =

𝑑𝑗
𝑙

√

1
𝑚2𝑘2

(𝑗 = 1, 2), 𝑑 = 𝑑1
𝑑2
, 𝜅 =

𝑘1
𝑘2
, 𝑝 = 𝑃 𝑙

𝑘2
, 𝜏 =

√

𝑘2
𝑚2𝑙2

𝑡, (5)

we derive the following counterpart nondimensional equations

𝐌𝝋′′ + 𝐃𝝋′ +𝐊𝝋 = 𝐅(𝝋). (6)

Here

𝐌 =
(

1 + 𝜇 1
1 1

)

, 𝐃 = 𝑑2

(

1 + 𝑑 −1
−1 1

)

, 𝐊 =
(

1 + 𝜅 − 𝑝 −1 + 𝑝(1 − 𝛼)
−1 1 − 𝑝𝛼

)

. (7)

and 𝐅(𝝋) is a set of nonlinear expansion terms.
Linearizing equations (6) in the vicinity of equilibrium 𝝋 = 0, 𝝋̇ = 𝟎, the following characteristic polynomial is obtained

𝑓0(𝜆) = 𝑎4𝜆
4 + 𝑎3𝜆3 + 𝑎2𝜆2 + 𝑎1𝜆1 + 𝑎0, (8)

where

𝑎4 = 𝜇, 𝑎3 = 𝑑2(4 + 𝑑 + 𝜇), 𝑎2 = 𝜅 + 4 + 𝜇 + 𝑑𝑑22 − 𝑝(2 + 𝜇𝛼),

𝑎1 = 𝑑2[𝜅 + 𝑑 − 𝛼𝑝(𝑑 + 1)], 𝑎0 = 𝛼𝑝2 − 𝛼𝑝(𝜅 + 2) + 𝜅. (9)

3. The stability conditions of the linearized system (no damping)

Firstly, let us consider the undamped case which formally corresponds to the case 𝑑2 = 0. The zero solution of the MDK system
(we will refer it as (6)𝑙𝑖𝑛) is stable (marginally) when polynomial has two pairs of purely imaginary roots which means that the
following conditions

𝑎(0)2 (𝑝) = 𝑎2|𝑑2=0 > 0, 𝑎0(𝑝) > 0, 𝐻(𝑝) = (𝑎(0)2 )2 − 4𝜇𝑎(0)0 > 0 (10)

hold. Here the expression for 𝐻 is determined by formula

𝐻(𝑝) = (𝜇2𝛼2 + 4)𝑝2 − 2[𝜇(𝜇 − 𝜅)𝛼 + 2(𝜇 + 𝜅 + 4)]𝑝 + 𝜅2 + 2(4 − 𝜇)𝜅 + (𝜇 + 4)2. (11)

Assuming that the values of the parameters 𝜇, 𝜅 are known, we shall seek a solution to the system of inequalities (10) depending
on the value of the parameter 𝛼. Denote the discriminants of the quadratic polynomials 𝑎0(𝑝),𝐻(𝑝) as 𝑑𝑖𝑠𝑎0 and 𝑑𝑖𝑠𝐻 , respectively,
we get

𝑑𝑖𝑠 (𝛼) = (𝜅 + 2)2𝛼2 − 4𝜅𝛼, 𝑑𝑖𝑠 (𝛼) = −16𝜇[2𝜇(𝜇 + 𝜅 + 2)𝛼2 + (𝜅 − 𝜇)(𝜅 + 𝜇 + 4)𝛼 − 4𝜇𝜅], (12)
3

𝑎0 𝐻
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Fig. 2. Parameter family of the curves in plane 𝛼𝑝.

The first of these expressions has a zero root 𝛼0 = 0 and a positive root

𝛼⋆ = 4𝜅
(𝜅 + 2)2

. (13)

The polynomial 𝑑𝑖𝑠𝐻 (𝛼) has two real roots of opposite signs

𝛼𝑗 =
1

4𝜇(𝜇 + 𝜅 + 2)
[(𝜇 − 𝜅)(𝜇 + 𝜅 + 4) + (−1)𝑗 (𝜇 + 𝜅)

√

(𝜅 − 𝜇 + 4)2 + 16𝜇], 𝑗 = 1, 2. (14)

Notice that for any admissible values of the parameters 𝜇, 𝜅, 𝛼 at least one of the polynomials 𝑎0(𝑝), 𝐻0(𝑝) has real roots. Indeed,
suppose the opposite, that is, the discriminants of these quadratic polynomials are negative. Since 𝛼1 < 𝛼0 = 0, this is only possible
if 0 < 𝛼 < 𝛼⋆(𝜇, 𝜅), 𝛼 > 𝛼2(𝜇, 𝜅). However, it is easy to see that this requirement is impracticable. Assuredly, calculating 𝑑𝑖𝑠𝐻 (𝛼⋆),
we obtain

64𝜇𝜅
(𝜅 + 2)4

[(2 − 𝜇)𝜅 + 2(2 + 𝜇)]2 ≥ 0, (15)

that is the value 𝛼⋆ does not exceed the value of 𝛼2. Moreover, the equal sign is possible only under the condition 𝜇 > 2, 𝜅 =
2(𝜇 + 2)∕(𝜇 − 2). In other words, in the region of negativity of the discriminant 𝑑𝑖𝑠𝑎0 , the expression for 𝑑𝑖𝑠𝐻 is positive.

Taking into account that for any admissible values of the parameters 𝜇, 𝜅, the following inequalities hold

𝛼1 < 𝛼0 < 𝛼⋆ ≤ 𝛼2, (16)

we shall solve the system of inequalities (10) depending on the value of the parameter 𝛼.
Geometrically, each of the equations 𝑎(0)2 (𝑝) = 0, 𝑎0(𝑝) = 0, 𝐻0(𝑝) = 0 defines a two-parameter family of curves in the plane 𝛼𝑝

(Fig. 2).
Their explicit equations are

𝑝 = 𝑝2(𝛼) =
𝜇 + 𝜅 + 4
𝜇𝛼 + 2

, 𝑝 = 𝑝0𝑗 (𝛼) = 1 + 𝜅
2
+ (−1)𝑗

√

𝑑𝑖𝑠𝑎0
𝛼

, (17)

𝑝 = 𝑝𝐻𝑗 =
1

𝜇2𝛼2 + 4
[𝜇(𝜇 − 𝜅)𝛼 − 2(𝜇 + 𝜅 + 4) +

(−1)𝑗

2
√

𝑑𝑖𝑠𝐻 ], 𝑗 = 1, 2. (18)

Let us calculate the partial derivatives
𝜕𝐻
𝜕𝛼

= 2𝜇𝑝(𝜇𝛼𝑝 + 𝜅 − 𝜇), 𝜕𝐻
𝜕𝑝

= 2[(𝜇2𝛼2)𝑝 + 𝜇(𝜇 − 𝜅)𝛼 − 4(𝜇 + 𝜅 + 4)]. (19)

It is easy to see that curve 𝐻(𝛼, 𝑝) = 0 does not intersect the abscissa axis, because 𝐻(𝛼, 0) = (𝜇 − 𝜅)2 + 8(𝜇 + 𝜅 + 2) ≠ 0. Thus,
𝜕𝐻∕𝜕𝛼 = 0 if and only if

𝛼 =
𝜇 − 𝜅
𝜇𝑝

. (20)

In this case, the assumption 𝜕𝐻∕𝜕𝑝 = 0 leads to the consequences

𝑝 = 2 +
𝜇 + 𝜅
2

, 𝐻 = −(𝜇 + 𝜅)2 ≠ 0, (21)

and is false for any values of parameters 𝜇, 𝜅. Thus, the curves 𝐻(𝛼, 𝑝) = 0 are regular. Each curve consists of two continuous
branches 𝑝 = 𝑝𝐻1(𝛼), 𝑝 = 𝑝𝐻2(𝛼). The lower and upper branches each have one stationary point, respectively

𝐵(
𝜇 − 𝜅

, 2), 𝐷(
𝜇 − 𝜅

, 𝜇 + 𝜅 + 2). (22)
4

2𝜇 𝜇(2 + 𝜇 + 𝜅)
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We calculate the value of the second derivative 𝑑2𝑝
𝑑𝛼2

at these points. Using the well-known formula

𝑑2𝑝
𝑑𝛼2

= − 1
(𝜕𝐻∕𝜕𝑝)3

[𝐻𝛼𝛼(
𝜕𝐻
𝜕𝑝

)2 − 2𝐻𝛼𝑝
𝜕𝐻
𝜕𝛼

𝜕𝐻
𝜕𝑝

+𝐻𝑝𝑝(
𝜕𝐻
𝜕𝛼

)2], (23)

e obtain
𝑑2𝑝
𝑑𝛼2

(𝛼𝐵 , 𝑝𝐵) =
2𝜇2

𝜇 + 𝜅
> 0,

𝑑2𝑝
𝑑𝛼2

(𝛼𝐷, 𝑝𝐷) = −
𝜇2(𝜇 + 𝜅 + 2)2

2(𝜇 + 𝜅)
< 0. (24)

As a consequence, the function 𝑝 = 𝑝𝐻1(𝛼) decreases on the interval [𝛼𝐴, 𝛼𝐵) and increases as 𝛼 ∈ (𝛼𝐵 , 𝛼𝐶 ]; the function 𝑝 = 𝑝𝐻2(𝛼)
increases on the interval [𝛼𝐴, 𝛼𝐷) and decreases as 𝛼 ∈ (𝛼𝐷, 𝛼𝐶 ].

Thus, geometrically, the condition 𝐻 = 0 may be considered as a two-parameter family of closed regular curves in the plane 𝛼𝑝
ith apexes at the points 𝐴 (left apex), 𝐵 (downside apex), 𝐶 (right apex), 𝐷 (upside apex).

Below we will repeatedly use the well-known equivalence of inequalities, which we formulate in the form of the following three
tatements.

Let 𝜓(𝜉) = 𝑏2𝜉2 + 𝑏1𝜉 + 𝑏0 be the real-valued quadratic polynomial with two different real roots 𝜉1 < 𝜉2, and 𝜉0 is some arbitrary
umber.
Statement 1. The inequality 𝜉0 < 𝜉1 is equivalent to system of inequalities

𝑏2𝜓(𝜉0) > 0, 𝜉0 < −
𝑏1
2𝑏2

. (25)

Statement 2. The double inequality 𝜉1 < 𝜉0 < 𝜉2 is equivalent to inequality 𝑏2𝜓(𝜉0) < 0.
Statement 3. The inequality 𝜉0 > 𝜉2 is equivalent to system of inequalities

𝑏2𝜓(𝜉0) > 0, 𝜉0 > −
𝑏1
2𝑏2

. (26)

The following cases are possible depending on the value of the parameter 𝛼.
(A1) 𝛼 < 𝛼1. In this case, the inequality 𝑑𝑖𝑠𝐻 (𝛼, 𝜅, 𝜇) < 0 takes place, that is, 𝐻0 is positive for any value of the parameter 𝑝. To

find the stability condition, it is necessary to compare the expressions 𝑝2(𝛼) and 𝑝0𝑗 (𝛼).
Since 𝛼 < 0, then the condition 𝑎0(𝑝) > 0 is equivalent to the inequality 𝑝 < 𝑝01(𝛼, 𝜇, 𝜅). In other words, for any positive value of

𝑝 from 𝑎0(𝑝) < 0 follows 𝑝 > 𝑝01. Calculate the value of 𝑎0(𝑝2)

𝑎0(𝑝2) = − 1
(𝜇𝛼 + 2)2

[𝜇(𝜅2 + 6𝜅 + 2𝜇 + 8)𝛼2 + (𝜅2 + 4𝜅 − 4𝜇𝜅 − 𝜇2 − 4𝜇)𝛼 − 4𝜅]. (27)

he expression in square brackets admits the following representation

[⋯] = −
𝑑𝑖𝑠𝐻
16𝜇

+ 𝜇[(𝜅 + 2)2𝛼2 − 4𝜅𝛼]. (28)

ince in the case under consideration we have 𝛼 < 𝛼1 < 𝛼2, then all terms on the right-hand side of equality (28) are positive. Thus,
aking into account that 𝑏2 = 𝛼 < 0, according to Statement 2 we conclude that 𝑝2 > 𝑝01 (the curve 𝑝 = 𝑝2(𝛼) passes above the upper
eft branch of the curve 𝑎0(𝑝) = 0). Hence, the inequalities (10) are fulfilled if and only if 𝑝 < 𝑝01(𝛼).

(A2) 𝛼1 ≤ 𝛼 < 0. The stability conditions (10) are satisfied either under the conditions 𝑝 < 𝑝01, 𝑝 < 𝑝𝐻1, 𝑝 < 𝑝2, or in the case
𝑝 < 𝑝01, 𝑝 > 𝑝𝐻2, 𝑝 < 𝑝2.

Let us first consider the possibility of intersection of the curves from the families 𝑝 = 𝑝01 and 𝐻(𝑝) = 0. For this purpose, we write
down the resultant of the polynomials 𝑎0(𝑝) and 𝐻(𝑝). After some manipulations, this expression may be presented in the following
form

𝑟𝑒𝑧(𝑎0,𝐻) = [𝜇(𝜅2 + 6𝜅 + 2𝜇 + 8)𝛼2 + (𝜅2 + 4𝜅 − 4𝜇𝜅 − 𝜇2 − 4𝜇)𝛼 − 4𝜅]2. (29)

The expression in square brackets considered as polynomial with respect to parameter 𝛼 has two real roots (one is positive
and other is negative), which correspond to the common points of the curves under consideration.1 Since these roots are multiple,
hen they are the roots of the derivative 𝜕𝑟𝑒𝑧∕𝜕𝛼, which, according to the well-known theorem from differential geometry, means
angency of the curves 𝑎0(𝑝, 𝛼) = 0 and 𝐻0(𝑝, 𝛼) = 0 at points 𝑀,𝑁 of the plane 𝛼 − 𝑝.

emma. In this case study the inequality 𝑝𝐻2(𝛼, 𝜇, 𝜅) ≤ 𝑝01(𝛼, 𝜇, 𝜅) holds (the equality, as it was established above, takes place only at
oint M).

roof. We use Statement 3, where as 𝜓(𝜉) we take 𝐻(𝑝), and 𝜉0 = 𝑝01. We have the following expression

𝐻(𝑝)𝑝=𝑝01 = 𝜓10(𝛼, 𝜇, 𝜅) − 𝜓11(𝛼, 𝜇, 𝜅)
√

𝑑𝑖𝑠0, (30)

where

𝜓10 = 2𝛼{𝜇2(𝜅 + 2)2𝛼3 + 2𝜇[𝜅2 − 2𝜅(𝜇 − 1) − 2𝜇]𝛼2 + 2[𝜅2 − 4𝜅(𝜇 − 1) + 𝜇2 + 4𝜇 + 8]𝛼 − 8𝜅}, (31)

1 In the case under consideration, we are interested in the negative value of 𝛼.
5
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𝜓11 = 2𝛼(2 + 𝜇𝛼)[𝜇𝛼(2 + 𝜅) − 2(𝜇 + 2)]. (32)

The expression (30) after identical manipulations may be presented in the following form

𝜓10 = 𝛼{2𝜇2(𝜅 + 2)𝛼3 − 4𝜇2𝛼2 + [𝜅2 + 6𝜅 + 2(𝜇2 + 4𝜇 + 8)]𝛼 − 4𝜅 + 𝜅(𝜇𝛼 + 1)2[(𝜅 + 2)𝛼 − 4]}. (33)

All parts of the sum in braces are negative, and, as well as 𝛼 < 0 then 𝜓10 is positive.
Taking into account that 𝜓2

10−𝜓
2
11𝑑𝑖𝑠0 = 16𝛼2𝑟𝑒𝑧(𝑎0,𝐻) and, according to formula (29), 𝑟𝑒𝑧(𝑎0,𝐻) is positive (with the exception

f point 𝑀), we can conclude that the inequality

𝜓10(𝛼, 𝜇, 𝜅) > |𝜓11(𝛼, 𝜇, 𝜅)|
√

𝑑𝑖𝑠0 (34)

olds, i.e. the first inequality of the Statement 3 is fulfilled.
Now we have to compare 𝑝01 and −𝑏1∕2𝑏2 which in this case reads as expression

[𝜇(𝜇 − 𝜅)𝛼 + 2(𝜇 + 𝜅 + 4)]∕(4 + 𝜇2𝛼2). (35)

Their difference taken with the positive multiplier 2(4 + 𝜇2𝛼2) has the following form

−𝛼(4 + 𝜇2𝛼2)
√

𝑑𝑖𝑠0 + [𝜇2(𝜅 + 2)𝛼2 − 4𝜇(𝜅 − 𝜇)𝛼 + 4(3𝜅 + 2𝜇 + 10)]. (36)

Let us show that the expression in square brackets is positive in the case under consideration. Suppose the opposite, which is
equivalent to the inequality

𝜅 ≤ 𝜅̃ = −
2(𝜇2𝛼2 + 2𝜇2𝛼 + 4𝜇 + 20)

𝜇2𝛼2 − 4𝜇𝛼 + 12
. (37)

We use Statement 2 now, here we take 𝑑𝑖𝑠𝐻 as 𝜓(𝜉), considered as a quadratic polynomial in 𝜅, and as 𝜉0 we take the expression
n the right-hand side of inequality (36). As a result, we have

𝑑𝑖𝑠𝐻 |𝜅=𝜅̃ = −
16𝜇(4 + 𝜇2𝛼2)

(𝜇2𝛼2 − 4𝜇𝛼 + 12)2
[2𝜇4𝛼2 − 𝜇2𝛼3(𝜇2 + 28𝜇 + 20)+

+ 8𝜇𝛼3(𝜇2 + 16𝜇 + 8) − 4𝛼(𝜇2 + 60𝜇 + 20) + 96(𝜇 + 5)] < 0. (38)

For polynomial 𝑑𝑖𝑠𝐻 on argument 𝜅 we have 𝑏2 = −16𝜇𝛼 > 0, 𝑏0 = 16𝜇2𝛼(𝜇 + 4) < 0. This means that its roots have the opposite
igns, i.e. the lesser root is negative. Hence, on interval (0, 𝜅̃)2 the expression 𝑑𝑖𝑠𝐻 is negative which leads to contradiction (this case
tudy considers the non-negative discriminant of 𝐻(𝑝)). Consequently, the inequality 𝑝01 > −𝑏1∕2𝑏2 takes place, and the Lemma is
roved.

Thus, the last two inequalities of the system (10) are equivalent to the condition 𝑝 ∈ (0, 𝑝𝐻1)𝑈 (𝑝𝐻2, 𝑝01).
Let us now analyze how the first of the inequalities (10) affects the found constraints on the parameter 𝑝. When considering

ase A1, it was established that 𝑝2 > 𝑝01 when 𝛼 < 𝛼1. Since for 𝛼 ≤ 0 the curves 𝑝 = 𝑝01(𝛼) and 𝑝 = 𝑝2(𝛼) have a single intersection
oint 𝑀 , then, by virtue of continuity, this relation will be preserved for 𝛼 ∈ [𝛼1, 𝛼𝑀 ). That is, the inequality 𝑎2 > 0 will be fulfilled
utomatically. From the other side, it is easy to see that function 𝑝01(𝛼) is increasing while the function 𝑝 = 𝑝2(𝛼) is decreasing.

Hence, when parameter 𝛼 exceed the values 𝛼𝑀 (remind that 𝑝01(𝛼𝑀 ) = 𝑝2(𝛼𝑀 )) the requirement 𝑎2(𝑝, 𝛼) > 0 implies fulfillment
of inequality 𝑎0(𝑝, 𝛼) > 0 (the curve 𝑝 = 𝑝2(𝛼) passes below the upper branch of the curve 𝑎0(𝑝, 𝛼) = 0). At the same time, on the
subinterval (𝛼𝑀 , 0) the system of inequalities 𝑎2 > 0, 𝑑𝑖𝑠𝐻 > 0 is equivalent to single inequality 𝑝 < 𝑝𝐻1. According to Statement 2,
for this it is sufficient to make sure that 𝑑𝑖𝑠𝐻 (𝑝) ∣𝑝=𝑝2(𝛼)< 0. The corresponding expression coincides with the expression (b8) taking
with multiplier −4𝜇 and is negative on interval (𝛼𝑀 , 𝛼𝑁 ). Thereby, on subinterval (𝛼𝑀 , 0) system of inequalities (10) is equivalent
to inequality 𝑝 < 𝑝𝐻1.

Remark 1. The expression in square brackets in formula (19) determines two values of parameter 𝛼 ∶ one negative and another
positive. Geometrically, in plane 𝑝𝛼 this values correspond to abscissas of intersection points 𝑀,𝑁 of the curves 𝑎0(𝑝, 𝛼) = 0, 𝑎2(𝑝, 𝛼) =
0 (Fig. 2). Note that at this points also the equality 𝐻(𝑝, 𝛼) = 0 takes place.

(A3) 0 < 𝛼 < 𝛼𝐹 . This is the simplest one, because inequality 𝑎0 > 0 is fulfilled, and, as it was shown below, 𝐻(𝛼, 𝑝) ∣𝑎2=0< 0.
Therefore, system (10) is equivalent to single inequality 𝑝 < 𝑝𝐻1(𝛼).

(A4) 𝛼𝑁 ≤ 𝛼 ≤ 𝛼𝑁 . It is convenient to split this case into two subcases, depending on the position of the point 𝑁 which is the
common point of the curves 𝑎0(𝛼, 𝑝) = 0, 𝑎2(𝛼, 𝑝) = 0, 𝐻(𝛼, 𝑝) = 0. At the point 𝑁 , the branches 𝑝 = 𝑝𝐻1(𝛼) and 𝑝 = 𝑝02(𝛼), are
tangent, and there are three possible cases: (a) 𝑝𝐹 < 𝑝𝑁 < 𝑝𝐶 , (b) 𝑝𝐶 < 𝑝𝑁 < 𝑝𝐹 , (c) 𝑝𝐹 = 𝑝𝑁 = 𝑝𝐶 (Fig. 3). To distinguish these
cases it is sufficient to compare expressions for 𝑝𝐹 = 1 + 𝜅∕2, and 𝑝𝑁 which has the following form

𝑝𝑁 = 1
4
(𝜇 + 3𝜅 −

√

𝜇2 + 6𝜇𝜅 + 𝜅2). (39)

2 Under the assumption that 𝜅̃ is positive. If it is not, then expression (28) is definitely positive.
6
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Fig. 3. Possible location of apexes 𝐹 and 𝐶.: (a) 𝜇 = 2, 𝜅 = 1; (b) 𝜇 = 5, 𝜅 = 5; (c) 𝜇 = 6, 𝜅 = 4.

Table 1
Stability region for parameter 𝑝.
𝑁 𝛼 𝑝 Remark

𝐴1 𝛼 < 𝛼𝐴 𝑝 ∈ (0, 𝑝01)
𝐴2.1 𝛼𝐴 ≤ 𝛼 < 𝛼𝑀 𝑝 ∈ (0, 𝑝𝐻1)𝑈 (𝑝𝐻2 , 𝑝01)
𝐴2.2 𝛼𝑀 ≤ 𝛼 ≤ 0 𝑝 ∈ (0, 𝑝𝐻1)
𝐴3 0 < 𝛼 < 𝛼𝐹 𝑝 ∈ (0, 𝑝𝐻1)

𝐴4 𝛼𝐹 ≤ 𝛼 < 𝛼𝑁
𝑝 ∈ (0, 𝑝01)𝑈 (𝑝02 , 𝑝𝐻1)
𝑝 ∈ (0, 𝑝01)𝑈 (𝑝02 , 𝑝𝐻1)

(2 − 𝜇)𝜅 + 2(𝜇 + 2) > 0
(2 − 𝜇)𝜅 + 2(𝜇 + 2) ≤ 0

𝐴5 𝛼𝑁 ≤ 𝛼 < 𝛼𝐶
𝑝 < 𝑝01

𝑝 ∈ (0, 𝑝𝐻1)𝑈 (𝑝𝐻2 , 𝑝01)
(2 − 𝜇)𝜅 + 2(𝜇 + 2) ≥ 0
(2 − 𝜇)𝜅 + 2(𝜇 + 2) < 0

𝐴6 𝛼 > 𝛼𝐶 𝑝 ∈ (0, 𝑝01)

The difference 𝑝𝑁 − 𝑝𝐹 is positive if and only if

𝛿0 = (2 − 𝜇)𝜅 + 2(𝜇 + 2) > 0. (40)

Remark 2. If 𝛿0 = 0, which is possible only if 𝜇 > 2, then

𝛼𝐶 = 1
2𝜇2

(𝜇2 − 4), 𝑝𝐶 =
2𝜇
𝜇 − 2

= 𝑝𝐹 . (41)

Now we turn to the condition 𝑎2 > 0. Let us show that on the interval [𝛼⋆, 𝛼𝑁 ) the double inequality 𝑝𝐻1 < 𝑝2 < 𝑝𝐻2 holds. We
use Statement 2 and calculate the expression 𝐻(𝛼, 𝑝2):

𝐻(𝛼, 𝑝) ∣𝑝=𝑝2(𝛼)=
4𝜇

(2 + 𝜇𝛼)2
[𝜇(𝜅2 + 6𝜅 + 2𝜇 + 8)𝛼2 − (𝜇2 + 4𝜇𝜅 − 𝜅2 + 4𝜇 − 4𝜅)𝛼 − 4𝜅]. (42)

The expression in square brackets is a quadratic polynomial in 𝛼. Its roots are determined by the intersection points of the
curves 𝐻(𝛼, 𝑝) = 0 and 𝑎2(𝛼, 𝑝) = 0, that is, they coincide with 𝛼𝑀 , 𝛼𝑁 , respectively. Taking into account that the coefficient at 𝛼2 is
positive, we conclude that on the interval (𝛼𝑀 , 𝛼𝑁 ) the expression under consideration is negative, that is, the solution to the system
of inequalities 𝐻 > 0, 𝑎2 > 0 is the set 𝑝 < 𝑝𝐻1.

Depending on which sign the expression 𝛿0 = (2 − 𝜇)𝜅 + 2(𝜇 + 2) has, the solution of the system (10) for 𝛼 ≤ 𝛼𝑁 is defined as
follows: 𝑝 ∈ (0, 𝑝01(𝛼))

⋃

(𝑝02(𝛼), 𝑝𝐻1(𝛼)) if 𝛿0 > 0 or 𝑝 < 𝑝𝐻1 if 𝛿0 < 0. Similarly, one can verify that

𝑎0(𝛼, 𝑝) ∣𝑝=𝑝2(𝛼)= − [⋆]
(2 + 𝜇𝛼)2

, (43)

where symbol [⋆] denotes the expression in square brackets on the right side of formula (42). Taking into account the above
argumentation, we conclude that for 𝛼 > 𝛼𝑁 , the double inequality 𝑝01 < 𝑝2 < 𝑝02 holds.

Then the stability conditions (10) in the case 𝛿0 > 0 are equivalent to the inequality 𝑝 < 𝑝01, and in the case 𝛿0 < 0− the unity
of inequalities 𝑝 < 𝑝𝐻1 and 𝑝𝐻2 < 𝑝 < 𝑝01.

(A5) 𝛼 > 𝛼𝐶 . In this case, the third inequality (10) is satisfied automatically; moreover, the double inequality 𝑝01 < 𝑝2 < 𝑝02 takes
place. Therefore, the system of inequalities (10) is equivalent to the single inequality 𝑝 < 𝑝 .
7
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Fig. 4. The domain of destabilization caused by small damping (zone between yellow and red lines). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

4. Analysis of stability conditions for system (𝟔)𝒍𝒊𝒏

In this section we consider the weakly damping case (0 < 𝜀 ≪ 1) and how the stability conditions change comparing with results
presented in Table 1.

The necessary and sufficient conditions of stability according to Lienard–Chipart criterion [38] are

𝑎3 > 0, 𝑎1 > 0, 𝑎0 > 0, 𝛥3 =
|

|

|

|

|

|

|

𝑎3 𝑎1 0
𝑎4 𝑎2 𝑎0
0 𝑎3 𝑎1

|

|

|

|

|

|

|

> 0. (44)

After substitution expression for coefficients 𝑎𝑗 (𝑗 = 1,… , 4) we have 𝛥3 = 𝛥 + 𝑂(𝜀2) where

𝛥 = ℎ2𝑝
2 − 2ℎ1𝑝 + ℎ0, ℎ2 = 𝛼[𝜇(𝜇 + 2)(𝑑 + 2)𝛼 + (𝑑 − 𝜇)(𝜇 + 𝑑 + 4)],

ℎ1 = 𝛼{𝑑2 + [𝜇2 + 3𝜇 + 4 − 𝜅(𝜇 + 1)]𝑑 − 𝜅(3𝜇 + 4)} + 𝑑2 + (𝜇 + 𝜅 + 4)𝑑 + 2𝜅(𝜇 + 4),

ℎ0 = 4𝑑2 + [(𝜇 − 𝜅)2 + 8(𝜇 + 2)]𝑑 + 4𝜅2. (45)

In the same spirit as it was done in Section 3 consider in the plane (𝛼, 𝑝) three-parameter families of curves 𝑎0(𝛼, 𝑝) = 0, 𝑝 =
𝑝1(𝛼), 𝛥(𝛼, 𝑝) = 0.

Substituting 𝑝 = (𝑑 + 𝜅)∕𝛼(𝑑 + 2) into expression for 𝑎0, we obtain

1
(𝑑 + 2)2

[
(𝑑 + 𝑘)2

𝛼
− 2𝑑2 − 𝑑(𝜅2 + 4) − 2𝜅2], 𝛼 ≠ 0. (46)

Therefore, the curves 𝑝 = 𝑝1(𝛼) and 𝑎0(𝛼, 𝑝) = 0 have a single intersection point 𝐺 with coordinates

𝛼𝐺 =
(𝑑 + 𝜅)2

(𝑑 + 2)(𝜅2 + 2𝑑)
> 0, 𝑝𝐺 = 𝜅2 + 2𝑑

𝜅 + 𝑑
. (47)

Since the equalities 𝑎0 = 0, 𝑎1 = 0 entail the equality 𝛥 = 0, then the point 𝐺 belongs to the curve 𝛥(𝛼, 𝑝) = 0.
Point 𝐺 belongs to the branch 𝑝 = 𝑝01(𝛼) if 𝑝𝐺 < 1 + 𝜅∕2 and the branch 𝑝 = 𝑝02(𝛼) otherwise. Writing down the difference

𝑝𝐺 − 1 − 𝜅∕2, we get
(𝜅 − 2)(𝜅 − 𝑑)

2(𝜅 + 𝑑)
. (48)

Thus, the curve 𝑝 = 𝑝1(𝛼) intersects the upper branch of the curve 𝑎0(𝛼, 𝑝) = 0, if

𝜅 < min(2, 𝑑) 𝑜𝑟 𝜅 > max(2, 𝑑), (49)

and the lower branch of this curve if

min(2, 𝑑) < 𝜅 < max(2, 𝑑). (50)

The curves 𝑎0(𝛼, 𝑝) = 0 and 𝛥(𝛼, 𝑝) = 0 have, in addition to the point 𝐺, two more intersection points 𝐸 and 𝐿 (Fig. 4).
Their abscissas can be found by equating to zero the resultant of the corresponding polynomials in the argument 𝑝

𝑟𝑒𝑧 (𝛼) = 𝛼[(𝑑 + 2)(𝜅2 + 2𝑑)𝛼 − (𝑑 + 𝜅)2](𝑔 𝛼2 + 𝑔 𝛼 + 𝑔 ), (51)
8
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Fig. 5. The surface obtained based on (56).

where

𝑔2 = 𝜇(𝜇 + 2)[(𝜅 + 2)(𝜅 + 4)𝑑 + 2(𝜇 + 𝜅 + 4)(𝜇 + 2𝜅 + 4)], 𝑔1 = 𝜅(𝜅 + 4)𝑑2 + 2[(𝜇 + 4)𝜅2+ (52)
+ 2(−𝜇2 + 𝜇 + 8)𝜅 − 2𝜇(𝜇 + 4)]𝑑 + (4𝜅 − 𝜇2 − 4𝜇)[2(𝜇 + 2)𝜅 + (𝜇 + 4)2],

𝑔0 = −4𝜅(𝑑 + 𝜇 + 4)2.

Since 𝑔2 > 0, 𝑔0 < 0, then the polynomial 𝑔2𝛼2+𝑔1𝛼+𝑔0 has two real roots of opposite signs. We denote these roots by 𝛼𝐸 (< 0), 𝛼𝐿.
The corresponding expressions are

𝛼𝐸 = − 1
2𝑔2

(𝑔1 +
√

𝑔21 + 4𝑔2𝑔0) < 0, 𝛼𝐿 = 1
2𝑔2

(−𝑔1 +
√

𝑔21 + 4𝑔2𝑔0) > 0. (53)

The ordinates of the points 𝐸,𝐿 are the roots of the polynomial

𝜓2(𝑝) = 2(𝜇 + 𝑑 + 4)𝑝2 − [(3𝜅 + 8)𝑑 + 2𝜅(𝜇 + 6) + (𝜇 + 4)(𝜇 + 8)]𝑝+

+ (𝜅 + 2)(𝜅 + 4)𝑑 + 4𝜅2 + 6𝜅(𝜇 + 4) + 2(𝜇 + 4)2 (𝑝𝐸 > 𝑝𝐺 > 0). (54)

Let us now turn to the equation 𝛥(𝛼, 𝑝) = 0. Note that the curves of this family degenerate if the expression

𝑑𝑖𝑠𝛥(𝛼) = ℎ21 − ℎ2ℎ0 = 4(𝜇 + 𝑑 + 4)2{[(𝑑 − 𝜅)2 − 2𝑑𝜇(𝜇 + 𝜅 + 2)]𝛼2−

[2𝑑2 − (𝜇2 + 4𝜇 − 𝜅2)𝑑 + 2𝜅2]𝛼 + (𝑑 + 𝜅)2} (55)

is negative.
The discriminant of the quadratic polynomial 𝑑𝑖𝑠𝛥(𝛼) is

16𝑑(𝜇 + 𝜅)2{4(𝑑2 + 𝜅2) + 𝑑[(𝜇 − 𝜅)2 + 8𝜇 + 16]} > 0, (56)

hence 𝑑𝑖𝑠𝛥(𝛼) has two different real roots 𝛼3, 𝛼4 (𝛼3 < 𝛼4). Note that over a wide range of parameter values the expression
(𝑑 − 𝜅)2 − 2𝜇𝑑(𝜇 + 𝜅 + 2) is negative (Fig. 5), therefore 𝛼3𝛼4 < 0.

Consider the question of the sign of the expression ℎ2(𝛼, 𝜇, 𝜅, 𝑑). With respect to the parameter 𝛼 it is negative if

𝚖𝚒𝚗(0, 𝛼5) < 𝛼 < 𝚖𝚊𝚡(0, 𝛼5), 𝛼5 =
(𝜇 − 𝑑)(𝜇 + 𝑑 + 4)
𝜇(𝜇 + 2)(𝑑 + 2)

(57)

and is positive outside the specified interval. Insofar as

𝑑𝑖𝑠𝛥|𝛼=𝛼5 = {
𝜅[(𝜇 + 1)𝑑2 + 4(𝜇 + 1)𝑑 − 𝜇2] + 𝑑[𝜇(𝜇2 + 5𝜇 + 8) − 𝑑2 − 4𝑑]

𝜇(𝜇 + 2)(𝑑 + 2)
}2 ≥ 0, (58)

then, according to Statement 2, 𝛼3 ≤ 𝛼5 ≤ 𝛼4, and the domain ℎ2 ≤ 0 in the parameter space 𝛼, 𝜇, 𝜅, 𝑑 belongs to the domain 𝑑𝑖𝑠𝛥 ≥ 0.
As a consequence, if 𝑑𝑖𝑠𝛥 < 0, then ℎ2 > 0, and 𝛥 > 0.

The roots of the polynomial 𝛥(𝛼, 𝑝) with respect to parameter 𝑝 are determined by formula

𝑝𝛥𝑗 =
1
ℎ2

(ℎ1 + (−1)𝑗
√

ℎ21 − ℎ2ℎ0), 𝑗 = 1, 2. (59)
9
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Fig. 6. Different variants for intersection the curves 𝛥(𝛼, 𝑝) = 0 and 𝑎1(𝛼, 𝑝) = 0 ∶ (a) 𝜇 = 2, 𝜅 = 0.6, 𝑞 = 6; (b) 𝜇 = 2, 𝜅 = 0.5, 𝑞 = 7; (c) 𝜇 = 2, 𝜅 = 2, 𝑞 = 3.

Fig. 7. Surface in parameter space where the equality 𝑝𝐸 = 𝑝𝑄 takes place.

Remark 3. In fact, for the purpose of analysis the stability conditions (44) we can exclude the cases 𝛼5 = 𝛼𝑗 (𝑗 = 3, 4) from the
consideration. Indeed, if such equality takes place, then ℎ2 = 0, ℎ21 − ℎ0ℎ2 = 0, therefore ℎ1 = 0. Taking into account that ℎ0 > 0,
one can see that the requirement 𝛥 > 0 is fulfilled.

Let us denote as 𝑄 and 𝑆 points where two branches 𝑝 = 𝑝𝛥1 (𝛼), 𝑝 = 𝑝𝛥2 (𝛼) meet each other. Their abscissas, as it follows from
the formula (55) are 𝛼3, 𝛼4, and the corresponding values for ordinates are determined as following expressions

𝑝𝑄 = (
ℎ1
ℎ2

) ∣𝛼=𝛼3 , 𝑝𝑆 = (
ℎ1
ℎ2

) ∣𝛼=𝛼4 . (60)

Let 𝛼 ≤ 0. Then the inequality 𝑎1(𝛼, 𝑝) > 0 is fulfilled. On interval 𝛼 ∈ (−∞, 𝛼𝐸 ) two kinds of solution for system 𝑎0 > 0, 𝛥 > 0 are
possible. If for given values of parameters 𝜇, 𝜅, 𝑑 the value of the expression 𝑝𝐸 does not exceed the value of 𝑝𝑄 (the upper branch
of the curve 𝑎0(𝛼, 𝑝) intersects with the lower branch of the curve 𝛥(𝛼, 𝑝) = 0), then stability conditions are fulfilled if and only if
𝑝 < 𝑝01(𝛼) while 𝛼 < 𝛼𝐸 . If 𝛼 ∈ [𝛼𝐸 , 0], then these conditions are equivalent to inequality 𝑝 < 𝑝𝛥1(𝛼) (Fig. 6a). The same result takes
place when 𝑝𝑄 ≤ 0 (Fig. 6b). The explicit expression for 𝑝𝑄 is bulky enough and is formed by substitution the lesser root of the
polynomial (55) (𝛼3, which is the irrational expression) into formula (60), with considering formulas (45). The surface 𝑝𝐸 = 𝑝𝑄 is
presented in Fig. 7.

If parameters 𝜇, 𝜅, 𝑑 satisfy the condition 0 < 𝑝𝑄 < 𝑝𝐸 (Fig. 6c), then stability conditions may be presented in the following form

𝑝 < 𝑝01(𝛼) 𝑖𝑓 𝛼 ≤ 𝛼𝑄,
𝑝 ∈ (0, 𝑝𝛥1)𝑈 (𝑝𝛥2 , 𝑝01) 𝑖𝑓 𝛼 ∈ [𝛼𝑄, 𝛼𝐸 ),

𝑝 < 𝑝𝛥1(𝛼) 𝑖𝑓 𝛼 ∈ [𝛼𝐸 , 0].
(61)

Suppose that 𝛼 ∈ (0, 𝛼𝐺). Consider the system of inequalities

𝑝 > 𝑝1(𝛼, 𝜅, 𝑑), 𝛥(𝛼, 𝑝, 𝜇, 𝜅, 𝑑) > 0. (62)

Let us calculate the expression

𝛥| = (1 +
𝜇 + 2

)2[(𝑑 + 2)(𝜅2 + 2𝑑) −
(𝑑 + 𝜅)2

]. (63)
10
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Fig. 8. Partition of the parametric space 𝜇𝜅𝑑 defining the setting of 𝐺,𝐿, 𝐹 , 𝑆 ordinates hierarchies.

It is negative because the expression in square brackets is negative in the range in question. Then, if ℎ2 > 0, then this means
(statement 2) that the value 𝑝 = 𝑝1 is located between the roots of the polynomial 𝛥(𝑝), and the system (62) is equivalent to the
inequality 𝑝 < 𝑝𝛥1.

If ℎ2 < 0, then 𝑝1 is greater than the larger of the roots of the polynomial 𝛥(𝑝), which is again determined by expression 𝑝𝛥1
according to formula (59), since the factor 1∕ℎ2 has changed its sign. Therefore, in this case, system (62) is equivalent to the
inequality 𝑝 < 𝑝𝛥1.

The explicit expression for 𝑝𝐹 is rather cumbersome and is not presented here.

Remark 4. Recall that the boundary of the stability region was obtained under the assumption of weak damping with an error
𝑂(𝜀2).

For the convenience of the subsequent explanation, we introduce the following label: 𝑊 will denote the one of the points 𝐺, 𝐿
whose ordinate is the lesser. The surface 𝑝𝐺 = 𝑝𝐿 separates the first octant of parametric space 𝜇, 𝜅, 𝑑 on two parts, thus for different
values of these parameters 𝑊 may represent either point 𝐺 or 𝐿.

Note that the solution of the system of inequalities (44) with respect to the parameter 𝑝 essentially depends on the values of the
parameters 𝜇, 𝜅, 𝑑. Typologically, the restrictions on parameter 𝑝, which satisfy the stability conditions, can be divided into three
cases:

(C1) point 𝑊 belongs to branches 𝑝 = 𝑝𝛥1(𝛼) and 𝑝 = 𝑝01(𝛼);
(C2) point 𝑊 belongs to branches 𝑝 = 𝑝𝛥1(𝛼) and 𝑝 = 𝑝02(𝛼);
(C3) point 𝑊 belongs to branches 𝑝 = 𝑝𝛥2(𝛼) and 𝑝 = 𝑝01(𝛼).

Remark 5. To distinguish these cases we need to compare values of 𝑝𝐹 = 1 + 𝜅∕2 and 𝑝𝐺 , 𝑝𝐿, 𝑝𝑆 which are determined according
to formulas (47), (54) and (60) respectively. The comparison of each pair may be presented as a 3D-surface in the parameter
space 𝜇, 𝜅, 𝑑 (Fig. 8). These surfaces separates the first octant onto domains each of which corresponds to some hierarchy of values
𝑝𝐹 , 𝑝𝐺 , 𝑝𝐿, 𝑝𝑆 . In fact, there are 14 possible combinations (Fig. 9d).

Consider these three cases in sequence.
(C1) From the viewpoint of the analysis of stability conditions, the simplest case is 𝑝𝐺 < 𝑝𝐿. Since on the interval (0, 𝛼𝐺) the

condition 𝛥|𝑝=𝑝1 < 0 holds, then the system 𝛥 > 0, 𝑎1 > 0 is equivalent to the inequality 𝑝 < 𝑝𝛥1. In this case, the condition 𝑎0 > 0 is
satisfied automatically. Similarly, on the interval 𝛼 ≥ 𝛼𝐺, we have

𝑎0(𝛼, 𝑝) ∣𝑝=𝑝1(𝛼) =
(𝜇 + 𝑑 + 4)2

𝛼(𝑑 + 2)2
[−(𝑑 + 2)(𝜅2 + 2𝑑)𝛼 + (𝜅 + 𝑑)2] =

=
(𝑑 + 2)(𝜅2 + 2𝑑)(𝜇 + 𝑑 + 4)2

𝛼(𝑑 + 2)2
(𝛼𝐺 − 𝛼) ≥ 0, (64)

and the system of inequalities 𝑎0 > 0, 𝑎1 > 0 is equivalent to the condition 𝑝 < 𝑝01(𝛼), in this case, the inequality 𝛥 > 0 takes place.
Let us now turn to the case 𝑝𝐿 < 𝑝𝐺. In the case of the 𝐿𝐹𝐺𝑆 hierarchy, the solution of subsystem of inequalities 𝑎1 > 0, 𝛥 > 0

has the form 𝑝 < 𝑝𝛥1 (𝛼) (since the point 𝐺 belongs to the lower branch of the curve 𝛥(𝛼, 𝑝) = 0). In this case, taking into account the
inequality 𝑎0 > 0 we have the restriction 𝑝 < 𝑝01(𝛼). Thus, stability conditions are fulfilled if and only if 𝑝 < 𝑝𝛥1 (𝛼) while 𝛼 ∈ (0, 𝛼𝐿)
and 𝑝 < 𝑝01(𝛼) while 𝛼 ≥ 𝛼𝐿. If the hierarchies 𝐿𝐹𝑆𝐺 or 𝐿𝑆𝐹𝐺 take place, point 𝐺 belongs to the upper branches of the curves
𝛥(𝛼, 𝑝) = 0, 𝑎 (𝛼, 𝑝) = 0. However, the fulfillment of the inequalities 𝑝 > 𝑝 , 𝑝 < 𝑝 leads to the inequality 𝑎 < 0, that is, the violation
11
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Fig. 9. Surfaces sections by planes 𝑑 = 𝑐𝑜𝑛𝑠𝑡 from Fig. 8: (a) 𝑑 = 1; (b) 𝑑 = 3; (c) 𝑑 = 4; (d) 𝑑 = 6. This cut contains the most of different hierarchies for values
𝑝𝐹 , 𝑝𝐺 , 𝑝𝐿 , 𝑝𝑆 . In numerical order they are: 𝐹𝐺𝐿𝑆, 𝐹𝐺𝑆𝐿,𝐺𝐹𝑆𝐿,𝐺𝑆𝐹𝐿, 𝑆𝐺𝐿𝐹 , 𝑆𝐿𝐺𝐹 , 𝑆𝐿𝐹𝐺,𝐿𝑆𝐹𝐺,𝐿𝐹𝑆𝐺,𝐿𝐹𝐺𝑆, 𝐹𝐿𝐺𝑆, 𝐹𝐺𝐿𝑆 (the same as in domain 1),
and 𝐺𝐹𝐿𝑆. Crossing the dash line does not change the case (C1, C2 or C3).

Fig. 10. Case C2. The possible combinations of mutual location the ‘‘governing points’’ 𝐺 and 𝐿 for 𝑑 = 6 ∶ (a) domain 2 (𝜇 = 1, 𝜅 = 1.5); (b) domain 1
(𝜇 = 4, 𝜅 = 1); (c) domain 12 (𝜇 = 3, 𝜅 = 7).

of stability conditions occurs. Similarly, the fulfillment of inequalities 𝑝 > 𝑝02, 𝑝 < 𝑝1 implies 𝛥 < 0. Thus, the stability conditions
are equivalent to the inequalities

𝑝 < 𝑝𝛥1(𝛼) 𝑖𝑓 𝛼 ∈ (0, 𝛼𝑊 ],
𝑝 < 𝑝01(𝛼) 𝑖𝑓 𝛼 > 𝛼𝑊 .

(65)

(C2) If 𝑝𝐺 < 𝑝𝐿, then the reasoning given when considering case C1 is valid with the difference that on the interval [𝛼𝐹 , 𝛼𝐺]
the fulfillment of the inequality 𝑝 < 𝑝𝛥1 does not guarantee the fulfillment of the condition 𝑎0 > 0. In other words, the stability
conditions have the form

𝑝 < 𝑝𝛥1(𝛼) 𝑖𝑓 𝛼 ∈ (0, 𝛼𝐹 ),
𝑝 ∈ (0, 𝑝01(𝛼))𝑈 (𝑝02(𝛼), 𝑝𝛥1(𝛼)) 𝑖𝑓 𝛼 ∈ [𝛼𝐹 , 𝛼𝑊 ),

𝑝 < 𝑝01(𝛼) 𝑖𝑓 𝛼 ≥ 𝛼𝑊 .
(66)

The same conditions hold for 𝑝𝐿 < 𝑝𝐺, however now the point 𝐿 is acting as 𝑊 (Fig. 10).
(C3) Carrying out arguments similar to those given above, we obtain the conditions for stability

𝑝 < 𝑝𝛥1(𝛼) 𝑖𝑓 𝛼 ∈ (0, 𝛼𝑊 ],
𝑝 ∈ (0, 𝑝𝛥1(𝛼))𝑈 (𝑝𝛥2(𝛼), 𝑝01(𝛼)) 𝑖𝑓 𝛼 ∈ [𝛼𝑊 , 𝛼𝑆 ),

𝑝 < 𝑝01(𝛼) 𝑖𝑓 𝛼 ≥ 𝛼𝑆 .
(67)

The typical cases are shown in Fig. 11.
As it follows from the results of Section 3, the admissible value of the parameter 𝑝, corresponding to the critical load 𝑃𝑐𝑟𝑖𝑡,

depends significantly on the angle between the axis of the second link of the pendulum and the direction of action of the external
load. This value also depends on the ratios of masses, stiffnesses and damping coefficients. In this section, we will highlight some
of the salient features. We will assume that the parameters 𝛼 and 𝜇 are determined and discuss the influence of the parameters 𝑑
and 𝜅 on the value 𝑝 .
12
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Fig. 11. Case C3 for 𝑑 = 6 ∶ (a) domain 6 (𝜇 = 4.8, 𝜅 = 5.2); (b) domain 7 (𝜇 = 5, 𝜅 = 5.8); (c) domain 8 (𝜇 = 5, 𝜅 = 6.2).

Fig. 12. Dependence the value of 𝑝𝑐𝑟𝑖𝑡 on damping ratio (Ziegler’s case).

Fig. 13. (a) The surface 𝑝 = 𝑝0𝑐𝑟𝑖𝑡(𝑑, 𝜇) ∣𝜅=1 in parameter space 𝜇𝑑𝑝; (b) dependence the critical load values from damping ratio for different values of 𝜇.

(1) As for the influence of the damping ratio 𝑑, then, as noted in the work of Herrmann [8] and a number of subsequent
publications [12,32,34,37], for the case 𝛼 = 0, 𝜇 = 2, 𝜅 = 1 the value of 𝑝𝑐𝑟𝑖𝑡 is determined by the expression

𝑝0𝑐𝑟𝑖𝑡 =
4𝑑2 + 33𝑑 + 4
2(𝑑2 + 7𝑑 + 6)

. (68)

The latter takes on values greater than 2 starting from about 𝑑 = 4 (Fig. 12) and reaches a maximum of ≈ 2.0863 at 𝑞 = 4+ 5
√

2,
which cancels the destabilization effect.

This tendency for 𝑑 is valid in our study. For limit case 𝛼 = 0 the expression for 𝑝𝑐𝑟𝑖𝑡 has the following form

𝑝0𝑐𝑟𝑖𝑡 =
(𝑑 + 4)𝜅2 − 2𝜇𝑑𝜅 + 𝑑(𝜇 + 4)2 + 4𝑑2

2(𝜇 + 𝑑 + 4)(𝜅 + 𝑑)
, (69)

and typical view of the surface 𝑝 = 𝑝0𝑐𝑟𝑖𝑡(𝑑, 𝜇) ∣𝜅=1 is presented in Fig. 13.
This monotonic (limited) increasing of 𝑝𝑐𝑟𝑖𝑡 with increased value of 𝑑 continues for nonzero values of 𝛼 < 𝛼⋆ (Fig. 14).
The numerical testing based on integrating the nonlinear equations (4) confirms this conclusion. In Fig. 15 there are presented

time histories for 𝜑1, 𝜑2 and projections of phase portrait for variable 𝜑2 for the following values of parameters: 𝜇 = 2, 𝜅 = 1, 𝛼 = 0.3
and different damping coefficients. For the cases (a) and (b) these coefficient are respectively 𝑑1 = 0.12, 𝑑2 = 0.04 and 𝑑1 = 0.2, 𝑑2 =

3 For comparison, with 𝑑 = 1 we have 𝑝 ≈ 1.464.
13
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Fig. 14. Dependence the value of 𝑝𝑐𝑟𝑖𝑡 on damping ratio (imperfect follower force): (a) surfaces 𝑝 = 𝑝𝑐𝑟𝑖𝑡(𝑑, 𝛼) for fixed stiffness ratio 𝜅 = 1 and different mass
ratios; (b) monotonic increase 𝑝𝑐𝑟𝑖𝑡 on damping ratio.

Fig. 15. Change in behavior by varying the damping ratio for 𝜇 = 2, 𝜅 = 1, 𝛼 = 0.3. Initial values are 𝜑1(0) = 0.025, 𝜑2(0) = 0.07, 𝜑̇1(0) = 0.02, 𝜑̇2(0) = −0.03: (a)
𝑑1 = 0.12, 𝑑2 = 0.04; (b) 𝑑1 = 0.2, 𝑑2 = 0.1; (c) 𝑑1 = 0.1, 𝑑2 = 0.02. On (a) slow rate of increase (flutter), on (b) strong rate of increase and asymptotical stability on
(c) are present.

0.1, and the origin is unstable. Although for case (b) the damping is higher, but the damping ratio is smaller 𝑑 = 2 < 3), and
the increase of amplitude is stronger. Contrary, in case (c) the damping coefficients are smaller (𝑑1 = 0.1, 𝑑2 = 0.02), but origin is
asymptotically stable, because the damping ratio is higher (5 > 3 > 2).

(2) Also, it seems interesting to study the influence of the parameter 𝜅 on the value of the critical load. Here we restrict ourselves
to discussing the situation near the boundary of the flutter instability zone (0 ≤ 𝛼 < 𝛼⋆). As it was shown in Section 4, this boundary
is determined by the lower branch of the curve 𝛥3(𝛼, 𝑝) = 0. Considering that the value of 𝛼⋆ does not exceed 4∕9 if 𝜅 ≤ 1, then we
can use the asymptotic representation for 𝑝𝛥1 (𝛼) ∶

𝑝 = 𝑝0𝑐𝑟𝑖𝑡 + 𝛼
𝑝0𝑐𝑟𝑖𝑡

4(𝜅 + 𝑑)
{[𝜇(3𝑑 + 8) + (𝑑 + 4)2]𝜅2 + 2𝜇𝑑(𝑑 − 𝜇)𝜅−

− 𝜇𝑑[𝑑(3𝜇 + 8) + (𝜇 + 4)2]} + 𝑂(𝛼2). (70)
14
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Fig. 16. The surface 𝜅 = 𝜅2(𝜇, 𝑑).

Fig. 17. Dependence the value of 𝑝𝑐𝑟𝑖𝑡 on stiffness ratio for constant damping ratio: (a) the view of surface 𝑝 = 𝑝0𝑐𝑟𝑖𝑡(𝑑, 𝜅) for perfect follower force; (b) dependence
𝑝𝑐𝑟𝑖𝑡 on stiffness ratio with fixed damping ratio and different values of 𝜇 and non-zero 𝛼; (c) the benefit of decreasing the stiffness ratio (with fixed mass and
damping ratios) for increase of 𝑝𝑐𝑟𝑖𝑡.

As noted above, values for damping ratio 𝑑 that are several times greater than unity are effective. In particular, for 𝑑 ≥ 4, 𝜅 ≤ 2
expression (69) is a decreasing function of the argument 𝜅. Indeed, we have for derivative the following expression

𝑑𝑝0𝑐𝑟𝑖𝑡
𝑑𝜅

=
(4 + 𝑑)𝜅2 + 2𝑑(4 + 𝑑)𝜅 − 𝑑[𝜇2 + 2(𝑑 + 4)𝜇 + 4(𝑑 + 4)]

2(𝑑 + 𝜅)2(𝜇 + 𝑑 + 4)
. (71)

The denominator of the fraction (71) is positive, and the numerator is negative if

𝜅 < 𝜅2 =
√

𝑑(
𝜇

√

𝑑 + 4
+
√

𝑑 + 4 −
√

𝑑). (72)

As one can see from Fig. 16, the expression 𝜅2 takes on values greater than two for 𝜇 ≥ 0.5. The other terms of the asymptotic
expansion (70) does not change this dependence 𝑝𝑐𝑟𝑖𝑡 from 𝜅 (Fig. 17).

The growth of critical value of external force achieved by softening the spring at the base of the pendulum is not very large,
however, depending on value of the parameter 𝛼, the gain of 10–15 percent is possible. In Fig. 18 the results of numerical integration
of motion equations for variable 𝜑2 are presented. For parameters 𝜇 = 2, 𝛼 = 0.2, 𝑑1 = 0.12, 𝑑2 = 0.02 different values of 𝜅 were tested.
For 𝜅 = 1 the value for 𝑝𝑐𝑟𝑖𝑡 = 𝑝𝛥1 is 1.904 (Fig. 18a). As the value of 𝜅 is decreasing, the value of 𝑝𝑐𝑟𝑖𝑡 is increasing: 𝑝𝑐𝑟𝑖𝑡 = 2.015
with 𝜅 = 0.5 and 𝑝𝑐𝑟𝑖𝑡 is equal to 2.104 when 𝜅 = 0.2.

(3) It should also be noted that, in contrast to the case of a perfect follower force (𝛼 = 0), there are intervals of variation of the
parameter 𝛼, in which the following phenomenon takes place: when 𝑝 = 𝑝 (𝛼) − 𝜀 (𝜀 > 0 is infinitesimally small) the equilibrium
15
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Fig. 18. Numerical validation of increasing the value 𝑝𝑐𝑟𝑖𝑡 with decreasing the stiffness ratio for 𝜇 = 2, 𝛼 = 0.3, 𝑑1 = 0.12, 𝑑2 = 0.02: (a)
𝜅 = 1, 𝑝 = 1.8; (b) 𝜅 = 1, 𝑝 = 1.9; (c) 𝜅 = 0.5, 𝑝 = 1.9; (d) 𝜅 = 0.5, 𝑝 = 2; (e) 𝜅 = 0.2, 𝑝 = 1.95.

position under study is asymptotically stable, but when the load decreases, stability is lost when the value 𝑝02(𝛼) is achieved and
equilibrium regain stability under 𝑝01(𝛼). This loss of stability as a rule is soft (the stable periodic orbits appear).

To illustrate this feature, we will consider a special case 𝜇 = 2, 𝜅 = 1. Then we have: 𝛼⋆ ≈ 0.444, 𝛼𝐺 ≈ 0.463, and for our test we
take 𝛼 = 0.45. The corresponding values for 𝑝𝛥1 , 𝑝02 and 𝑝01 are respectively 1.795, 1.665, 1.335. The results of numerical integration
are presented in Fig. 19.

For the value 𝑝 = 1.8 very weak flutter takes place, the eigenvalues are 0.0001±0.1265𝑖,−0.050±0.934. For the value 𝑝 = 1.78 the
equilibrium becomes asymptotically stable (Fig. 19b), the first pair of eigenvalues now have negative real part −0.0004 (the second
air chances slightly). For the value 𝑝 = 1.67 the eigenvalues are −0.0023 ± 0.0151𝑖, −0.0477 ± 1.037𝑖− equilibrium is asymptotically
table. But at 𝑝 = 1.66 stability is lost, we have two real eigenvalues of opposite signs (divergent instability). The trajectory run
way from zero to other point of attraction. This behavior takes place up to value 𝑝 = 1.335, the limit value for 𝜑2 is gradually
ecreasing (Fig. 19e). Eventually, the origin returns to stable state (Fig. 19f), the eigenvalues for 𝑝 = 1.33 are the following:
0.0045 ± 0.012𝑖, −0.0455 ± 1.253𝑖.

For rigorous analysis of such behavior it is not sufficient dealing with the linearized system (6)𝑙𝑖𝑛, because the nonlinear terms
(𝝋) may drastically change the result. Such case requires the separate study and is the subject of the future work.

. Conclusion

In the paper the stability problem for double pendulum subjected to imperfect follower force is studied. Unlike other works on
his subject, all three ratios: the mass, damping and stiffness presumed unknown. Their influence on the value of critical load is
nvestigated. Stability conditions for cases of undamped and weakly-damped systems are analyzed. The geometrical interpretation
f these conditions is given.

In particular, it seems interesting for applications the possibility of increasing the value of critical load by decreasing the stiffness
atio, i.e. softening the hinge at the base of the pendulum. Also the phenomenon of stability transition with changing the value of
oad is discovered, when the stable equilibrium under some value 𝑝 = 𝑝1 may become unstable for values 𝑝 < 𝑝1. This phenomenon
n some sense is similar to cases discussed in papers [3,39]. Its understanding require the nonlinear analysis of the equations and
s the subject of further research.
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Fig. 19. Stability transition ‘‘stable - unstable - stable’’ with decreasing the value of 𝑝 ∶ (a) Determining the values of 𝑝 where such transition occurs; (b)
weak instability (flutter) at 𝑝 = 1.8; c, (d) stability at 𝑝 = 1.78 and 𝑝 = 1.67 (near the boundaries of upper stability zone); d, (e) instability (soft divergence) at
𝑝 = 1.66, 𝑝 = 1.335 respectively; (f) the lower stability zone, 𝑝 = 1.33.
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