
edited by
Marco Giorgetti
Ramesh K. Agarwal 
Min Chen
Hao Peng

Advances in 
Machinery, 
Materials Science 
and Engineering 
Application X

Advances in Transdisciplinary 
Engineering series

volume 58

Proceedings of the 10th International 
Conference (MMSE 2024), Paris, France, 
27-28 July 2024



Nonlinear Vibration Isolator with Softening 

Spring and Nonlinear Damping 

Volodymyr PUZYROV
 a,b

, Nataliya LOSYEVA 
a,b

 and Nina SAVCHENKO
 c,1

  
a

 Universidad de Barcelona, Spain 
b Nizhyn Mykola Gogol State University, Ukraine 

c National Aerospace University KhAI, Ukraine 

Abstract. In recent decades, nonlinear isolators have become widely used to solve 
problems of passive isolation of unwanted vibrations. A special place is occupied 

by nonlinear stiffness isolation supports, which provide high static stiffness along 
with low dynamic stiffness or even quasi-zero stiffness (QZS) in the displacement 

range. These vibration isolators provide a higher isolation bandwidth with low 

transfer capacity than conventional linear devices. In this paper, nonlinear single-
degree of freedom (DOF) vibration isolator with quadratic and cubic nonlinear 

stiffness components and a quadratic damping component is analyzed. The system 

responses and magnitude of force transmissibility in the vicinity of resonant 
frequency are analyzed. The dynamic response is obtained using the harmonic 

balance method. A significant contribution from the quadratic component of the 

damping force is emphasized. Also asymptotical formulas for responses magnitude, 
resonant frequency and force transmissibility there are presented, which allow 

optimizing the choice of the parameters of the isolator more easily. 

Keywords. Nonlinear vibration isolator, nonlinear damping, harmonic balance 
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1. Introduction 

The use of passive type isolators is one of the widely used methods to control unwanted 

vibrations [1]. The characteristics of passive linear isolators have been widely studied 

[2, 3]. The simplest case of linear passive isolation is that a mass � is supported by a 

linear spring � on a rigid base, and vibration isolation can be achieved in the region of 

excitation frequency Ω > √2Ω� , where Ω�  is the natural frequency of the linear 

isolation system. The isolation efficiency of a linear isolator is limited by frequency 

range. In order to improve the efficiency, nonlinear isolators with high static and low 

dynamic stiffness have been proposed [4]. High static stiffness implies small deflection 

and large load, and low dynamic stiffness implies a wide range of isolation frequencies. 

The stiffness of nonlinear isolators can be realized by combining positive stiffness with 

negative stiffness to form a near-zero stiffness at the operating point, which is referred 

to in the literature as quasi-zero stiffness (QZS) characteristics [5, 6]. 
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Numerous types of designs have been proposed by various authors such as coil 

spring structures [7], plate or rod spring structures [8], cam-roller structures [9], and 

many others.  

The idea of using the inclined springs to achieve quasi-zero stiffness of the isolator 

was discussed in the paper [10]. Zheng et al. [11], proposed a negative stiffness 

magnetic spring (NSMS).  The NSMS, consisting of a pair of coaxial ring permanent 

magnets, was installed parallel to the mechanical spring to counteract its positive 

stiffness. Also in the work of [12], a nonlinear absorber with a negative stiffness 

magnetic spring was proposed. Various aspects of mitigation of the responses of the 

isolated structure were discussed in papers [13 – 15]. 

In this study we continue the analysis of the behavior of such a dynamic system, 

partially presented in the paper [16]. We show a significant influence of the quadratic 

component of damping on the magnitude of the responses of the structure and the force 

transmissibility. An analytical procedure for approximately finding the magnitude of 

responses is also proposed. 

2. Formulation of the Problem 

Consider the following equation 

��̈  +  	
�̇  + 	� �̇ |�̇| +  (�) =  � � �� 	�� (� �),                   (1) 

where (�)  =  ���� � +  �� ��  +  �� ��,which describes the motion of a mass under 

the action of a nonlinear restoring force, nonlinear friction force and external harmonic 

excitation (figure 1). 

 

Figure 1. Schematic view of nonlinear vibration isolator. 

Let us introduce the dimensionless variables and parameters according formulas 

� =  � ��, 	
  =  � �
 �
, ����  = �
� �
�, ��  =  �
��/�, ��  =  �
��/��, 
�
� = �, �/�
 = Ω.                                                      (2) 

In fact, below we assume that ���� = � �
�  (�
 = 1), but in the case when ���� is 

small (the case of quasi-zero stiffness), preserving the parameter �
 in the subsequent 

formulas is useful. 
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We rewrite equation (1) in the form 

���� + �
 ��� + �����|���| + �
 ��  + �� ���  + �����  = Ω� cos(Ω �).             (3) 

Based on Harmonic Balance (HB) method we seek the solution of equation (3) in 

the following form 

�(�) =  ��  +  �
 cos(Ω � + �).                                          (4) 

Substituting expression (4) into equation (3), taking into account that 

cos(Ω �)   = cos(Ω � + � − �)   = cos � cos(Ω � + �)   + sin � sin(Ω � + �) 

and limiting ourselves to first-order harmonics, we have 

Φ
  =  2 �
 ��  + �� (�
�  +  2 ���)  + �� �� (3 �
�  +  2 ���)  =  0,               (5) 

�
  � −Ω�  + �
  +  2 �� ��  +  3 ��  !���  + 
" �
�#$ = Ω� cos � ,              (6) 

       −Ω �
  !�
  + %�&  Ω �� �
 �'* �
# = Ω� sin �.                       (7) 

Assuming �
 >  0, from equalities (6), (7) we conclude 

Φ� (��, �
, Ω, �
, ��, �
, ��, ��)  =  0                                   (8) 

where 

Φ�  = -
4 ��� �
4  + 
� �
�%-&5  ��� Ω"  −  3 �� Ω�  +  3 �� (3 �� ���  +  2 �� ��  + �
)$ �
"  +
4�& �
 �� Ω� �
�  + { Ω"  −  (6 �� ���  +  4 �� ��  +  2 �
  − �
�)Ω�  +  [(3 �� ��  +��)�  +  3 �
 ��  − ���]}�
�  − Ω",                    (8a) 

3. Parametric Analysis of the Frequency-Amplitude Relation 

In this section we want to evaluate the influence of the mechanical parameters of the 

isolator on the value of �(Ω). Since we cannot write ��, �
 as an explicit functions of 

these parameters, we will express �
 from equality (5)  

                               �8
(��) =  92 ��(�
  + �� ��  + �� ���)− �� −  3 ����                                     (9) 

Substituting the found expression into equality (8), we obtain Φ; � (��)  =  0, where 

the expression Φ; � (��) is quite cumbersome, but has an algebraic structure and can be 

used to analyze the influence of parameters on the value of max ��(�). 
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Provided that the parameters of the isolator are given, the equality (8) defines the 

value of �� as an implicit function of the argument Ω. Thus, the maximum value of the 

oscillation amplitude is achieved at the frequency value corresponding to the condition 

                            <?�8
?�� +  1@ A��AΩ  =  0.                                          (10) 

Remark. For the variety of values of parameters �
, ��, �� the first multiplier in 

left-hand side of (10) takes non-zero values – the solutions with respect to ��  are 

complex. 

Differentiating the implicit function Φ� (�
, ��, Ω) we have 

               ?Φ; �(Ω)?Ω  = AΦ; �A��
A��AΩ  + AΦ; �AΩ  = AΦ; �AΩ  =  0.                                  (11) 

Taking into account the presence of a nonlinear damping component, the 

frequency-amplitude relation (8a) contains a cubic term relative to Ω. This does not 

allow, in contrast to many works (for example, [5, 17]), to write down the resonant 

frequencies in an explicit (relatively compact) form. For given values of the damping 

and stiffness parameters, a resonant frequency values may be presented in graphical 

form on a plane ��Ω as a line of intersection of surfaces 

                             Φ� (�
 (��), ��, Ω) = 0,    AΦ�AΩ = 0.                              (12) 

The frequency-amplitude curve as intersection of surfaces Φ� (��, Ω)  and � = ��  + �8
 (��) is presented in figure 2. 

Also in the next section a method for approximately finding these frequencies will 

be described. 

 

Figure 2. Frequency - amplitude curve as intersection of surfaces Φ� (��, Ω) and � =  ��  + �8
 (��). The 

2D curve is obtained as a projection of this intersection on the plane � Ω. Values of the parameters are �
  �
 = 1, �� = −0.01, �
 = 0.2: a) �� = 0.006, �� = 0.02;  b) �� = 0.006, �� = −0.02; с) �� = −0.006, �� =0.02; d) �� = −0.006, �� = −0.02. 
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Remark. The system of equations (12) although being an algebraic, has very high 

order, and finding its solution by numerical methods is not very effective (it is 

computation costly and allowing for a large error). Therefore, it is more advantageous 

to find a pair of values (��, ΩDEF) graphically, as shown in figure 3. 

 

Figure 3. Graphical determination of resonant frequency for different values of quadratic damping 

component.  �
 = 1, �� = −0.002, �� = 0.002: a)  �� = −0.03; b)  �� = 0.03; c)  �� = 0. 
Some results of numerical calculations are presented in the table 1. 

Table 1. Magnitudes of ��, ΩDEF, �
 calculated for different values of nonlinear parameters of the isolator 

(�
 = 0.2). 

�� �� �� �� Ω �
 

-0.03 -0.002 -0.004 0.136 0.895 8.652 

0.03 -0.002 -0.004 0.0127 0.997 3.435 

0 -0.002 -0.004 0.0271 0.974 4.828 

0 -0.002 -0.004 -0.0271 0.975 4.828 

0 -0.002 0.004 -0.0237 1.049 5.25 

0 -0.002 0.004 0.231 1.05 5.256 

-0.01 0.004 -0.001 -0.101 0.974 6.62 

0.01 0.004 -0.001 -0.0376 0.999 10.954 

As can be seen from table 1, the positive quadratic component of damping 

significantly reduces the magnitude of the peak responses. 

4. Asymptotic Representation of the Resonant Frequency and Magnitude of 
System Responses   

Note, that the problem of determining the optimal set of isolator parameters for an 

arbitrary set of the values �
, ��, ��, ��  may be very labor-intensive, because equalities 

(5), (8) contain seven unknown variables. 

 Therefore, to reduce the computational procedures, one can use previously the 

asymptotic representation of these values. Indeed, for a specific mechanical system, 

due to the existing technical limitations, the orders of magnitude are usually 

predetermined. As a rule, the dimensionless parameters are small, while the last three 

have an order of smallness higher than Ω. 

Considering that Ω is of the order of unity, and, in addition, we want to estimate 

the influence of the nonlinear component of stiffness, then the term ����
4 should also 

have a zero order of smallness. Accordingly, introducing a small parameter in an 

artificial way, we can write �
  = G �H
, ��  =  G� �H�,   ��  = G� �̃�,  ��  = G� �̃�, (�
  =  1) 
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��  = G (���  + G ��
),    �
  = 1G  (�
�  + G �

), Ω =  1 + G Ω
. 
The first iteration results on ���  =  0, Ω�  =  1. 
The second iteration leads to algebraic system 

 2 X�
  + κ�� X
��  =  0, 
9 X
�4  κ���   −  48 X
�"  κ�� Ω
  +  16 (ζ8
�  +  4 Ω
�)  −  16 =  0, 

X
��  (3 X
��  κ��  −  8 Ω
)  =  0. 
Expressing Ω
 from the third equation we find in series 

�
�  = 1�H
 , ��
  =  − �̃�2�H
� , Ω
  = 38 �̃��H
�. 
The third iteration leads to 

�

  = 124�H
�  M9 �̃�  − 64N  �H�O , P�  = 1128�H
  M27 �̃��  + 32 �H
4  − 256N  �̃� �H�O, 
���  = 124�H
�  M9 �̃�  − 64N  �H�O , S�	. 

Consequently, we have 

�� ≈  − ��2�
�  + ��24�
" M64N ��  + 9��O,   �
 ≈ 1�
  − 124�
� M64N  ��  −  9��O,       (13) 
PDEF ≈  1 + 3��8�
�  + 1128�
"  (27���  − 256N  �� ��  +  32 �
4). 

Although the formulas (13) are approximate, they give a pretty good estimation of 

magnitude (dimensionless) of system responses. In particular, for the first three rows 

from table 1 we have 9.39, 3.50, 4.99 vs 8.65, 3.44, 4.83 respectively. 

The non-dimensional force transmitted through the nonlinear coupling that 

comprises the isolator, presented in figure 1, is defined as 

UVD  = �
 ��′ + �� ��′ |��′|  +  ��  + �� ���  + �� ���. 
Applying again HB method we can present the first-order harmonic of the 

transmitted force in the form UVD  =  U cos(Ω � + �
), and the magnitude of the force 

is given by 

 U = Y�
�  ��
  +  2�� ��  +  3 ��  !���  + 
" �
�#$� + Ω� �
�  !�
  + %�&  �� Ω  �
#�.  (14) 
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Thus, the dimensionless force transmissibility is 

 Z\  = UΩ� .                                                    (15) 

In order to examine the influence of the parameters of isolator on magnitude of Z\  

we can use the same methodology as in previous section, e.g. consider the intersection 

of hyper-surfaces (8) and (15). 

Also, substituting formulas (13) into expression (15), we obtain an approximate 

formula 

Z\ ≈ 1�
 91 + 112�
� M9 ��  − 64N  ��O.                               (16) 

The force transmissibility curve according to formula (16) is presented in figure 4. 

 

Figure 4.  Force transmissibility curve according to formula (16). Values of the parameters are �
 = 1, �� =−0.01, �
 = 0.2: a) �� = 0.006, �� = 0.02; b) �� = 0.006, �� = −0.02;  
As one can see in figure 5, the magnitude of responses increases drastically for 

hardening spring (50 times or more) – the far right side corresponds to positive values 

of ��, ��. 

 

Figure 5. Dependence of magnitude of �
 on nonlinear stiffness components. 
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 . Conclusion 

A single-DOF nonlinear dynamical system which describes the vibration isolator is 

studied. The nonlinear components consist of quadratic damping force and quadratic 

and cubic stiffness terms. The system responses and magnitude of force transmissibility 

in the vicinity of resonant frequency are analyzed. Besides the qualitative features 

(softening spring is much more efficient then hardening one and "hardening" damping 

is welcomed), the approximate formulas are presented, which allow optimizing the 

choice of the parameters of the isolator more easily. Analytical conclusions are 

supported by numerical simulations. 

The future work involves developing an analytical algorithm for optimizing 

nonlinear characteristics of the isolator and applying this approach to several types of 

devices described in the literature. 
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