

Advances in Transdisciplinary Engineering series

volume 79

Advances in Machinery, Materials Science and Engineering Application XI

Proceedings of the 11th International Conference (MMSE 2025), Paris, France, 25-27 July 2025

EDITED BY Jun Ma Rachid Masrour Antonio Gloria Kaige Wang Sanjay M R

ADVANCES IN MACHINERY, MATERIALS SCIENCE AND ENGINEERING APPLICATION XI

Advances in Transdisciplinary Engineering

Transdisciplinary engineering is the exchange of knowledge about product, process, organization, or social environment in the context of innovation. The ATDE book series aims to explore the evolution of engineering, and promote transdisciplinary practices, in which the exchange of different types of knowledge from a diverse range of disciplines is fundamental. The series focuses on international collaboration and providing high-level contributions to the internationally available literature on the theme of the conference.

Editor-in-Chief

Josip Stjepandić, PROSTEP AG, Darmstadt, Germany

Advisory Board

Cees Bil, RMIT University, Australia

Milton Borsato, Federal University of Technology – Parana, Brazil
Shuo-Yan Chou, Taiwan Tech, Taiwan, China
Fredrik Elgh, Jönköping University, Sweden
Kazuo Hiekata, University of Tokyo, Japan
John Mo, RMIT University, Australia
Essam Shehab, Cranfield University, UK
Loon Ching Tang, National University of Singapore, Singapore
Amy Trappey, NTUT, Taiwan, China
Wim J.C. Verhagen. TU Delft. The Netherlands

Volume 79

Recently published in this series

- Vol. 78. Y.-W. Chen and R. Li (Eds.), Imaging, Signal Processing and Communications Proceedings of the 9th International Conference (ICISPC 2025), Osaka, Japan, 11-13 July 2025
- Vol. 77. Z. Wang (Ed.), Computer and Electrical Engineering Proceedings of the 18th International Conference on Computer and Electrical Engineering (ICCEE 2025), Singapore, 20-22 June 2025
- Vol. 76. F. Trigos, C.-J. Chou and J. Stjepandić (Eds.), Transdisciplinarity for a Better World Proceedings of the 32nd International Society of Transdisciplinary Engineering (ISTE) Global Conference, Monterrey, Nuevo Leon, Mexico, 7-11 July 2025
- Vol. 75. L. Trajković, S.S. Agaian, D. Avola and J. He (Eds.), Image Processing, Electronics and Computers – Proceedings of the 6th Asia-Pacific Conference (IPEC 2025), Dalian, China, 16-18 May 2025
- Vol. 74. L. Trajković, G. Zhang, X. Yu, C.-Y. Su, M. Paprzycki and S.S. Agaian (Eds.), Machine Intelligence and Digital Applications – Proceedings of the 2nd International Conference (MIDA 2025), Ningbo, China, 18-20 April 2025
- Vol. 73. F. Lumban Gaol, Y. Xu and Y. Dessouky (Eds.), Management Science and Industrial Engineering – Proceedings of the 7th International Conference (MSIE 2025), Bali Island, Indonesia, 24-26 April 2025

ISSN 2352-751X (print) ISSN 2352-7528 (online)

Advances in Machinery, Materials Science and Engineering Application XI

Proceedings of the 11th International Conference (MMSE 2025), Paris, France, 25–27 July 2025

Edited by

Jun Ma

University of South Australia, Australia

Rachid Masrour

Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez. Morocco

Antonio Gloria

University of Naples Federico II, Italy

Kaige Wang

Institute of Photonics and Photonic Technology, Northwestern University, China

and

Sanjay M R

King Mongkut's University of Technology North Bangkok, Thailand

© 2025 The Authors.

This book is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

ISBN 978-1-64368-628-8 (online) doi: 10.3233/ATDE79

A Sage company Nieuwe Hemweg 6B 1013 BG Amsterdam

Sage 1 Oliver's Yard 55 City Road London EC1Y 1SP

Sage 2455 Teller Road Thousand Oaks California 91320

Sage Unit No 323-333, Third Floor, F-Block International Trade Tower Nehru Place, New Delhi – 110 019

Sage 8 Marina View Suite 43-053 Asia Square Tower 1 Singapore 018960

DISCLAIMER

The authors, editors, and publisher will not accept any legal responsibility for any errors or omissions that may be made in this publication. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Foreword

The 11th International Conference on Advances in Machinery, Material Science and Engineering Application (MMSE 2025) is the premier international conference in the fields of mechanical engineering, material science and engineering application. This volume includes all papers accepted for presentation at the MMSE 2025 Conference, which was held in Paris, France, from 25 to 27 July. MMSE 2025 is organized by ISAE-SUPMECA, France and Wuhan University, China, co-sponsored by Wuhan University of Science and Technology, China; Huazhong University of Sciences and Technology, China; Wuhan University of Technology, China; China University of Geosciences (Wuhan), China; Wuhan Textile University, China; National University of Singapore, Singapore; Portland State University, USA; Washington University-St. Louis, USA; University of Reims Champagne-Ardenne, France; George Mason University, USA; Laboratoire Quartz, France, and the Institute of Materials, Minerals and Mining (IOM3), UK, among others.

The conference aims to bring together faculty members, leading scientists, academicians, research and graduate scholars, industry professionals, and decision-makers to discuss the latest developments, applications, advanced technologies, and processes in mechanical engineering and advanced materials, with particular focus on the interdisciplinary applications.

The two-day conference in Paris consisted of keynote speeches, scientific presentations, poster presentations and technical discussions. The proceedings of the conference contains 117 high-quality papers selected from 292 submissions, including international contributions from Asia and Europe, representing an acceptance rate of approximately 40%.

The accepted papers highlight the latest developments and research trends from a wide range of disciplines within the scope of the conference, and cover a broad range of topics, including mechanical design; advanced manufacturing technology; applied mechanics; fatigue and creep of materials; corrosion; coatings; electrical power; electronic techniques; energy storage; automation and control system design; robots; shock and vibration; simulation and modeling; machine vision; object detection; failure analysis; chemical engineering; marine engineering; structural engineering; electro-optical technology; autonomous driving technology; and emerging industrial applications and interdisciplinary technology. All contributions were subjected to a rigorous peer review process to ensure academic rigor innovation, and a contribution to the advancement of knowledge.

We would like to express our sincere gratitude to the conference chairs: Prof. Emin Bayraktar, ISAE-SUPMECA/Paris, France; Prof. Seeram Ramakrishna, National University of Singapore, Singapore and Prof. Ephraim Suhir, Life Fellow of IEEE, ASME, SPIE, IMAPS, Fellow of APS, IoP (UK) and SPE and Associate Fellow of AIAA, Portland State University, USA, for their dedication in making this MMSE 2025 a success.

We would also like to express our sincere gratitude to our keynote speakers: Prof. Yaohua Zhu, Hong Kong Polytechnic University, China, Prof. Yunfeng Liu, Zhejiang University of Technology, China, Prof. Weiguo Li, College of Aerospace Engineering,

Chongqing University, China, Prof. Raul Duarte Salgueiral Gomes Campilho, ISEP – School of Engineering, Portugal, Prof. Michael Todinov, Oxford Brookes University, UK, who joined us to present and share their latest findings. Thanks are also due to the MMSE reviewers, authors, and others who contributed to the success of the conference. We appreciate the support and assistance provided by all committee members throughout the event. MMSE 2025 is also indebted to IOS Press for their assistance and support in the publication of this volume.

Finally, on behalf of this MMSE 2025 Committee, and indeed the whole MMSE team, we would like to express our sincere appreciation to all authors and participants for their contributions. We believe that this MMSE 2025 proceedings will serve as an important archival reference for researchers and practitioners in the field. The next 12th International Conference on Advances in Machinery, Material Science and Engineering Application (MMSE 2026) will be held in Wuhan, China, hosted by Huazhong University of Sciences and Technology, China from 26 to 27 July 2026, and we look forward to seeing you in Wuhan next year.

Emin Bayraktar ISAE-SUPMECA/Paris 27 July 2025

About the Conference

Conference Name

2025 11th International Conference on Advances in Machinery, Materials Science and Engineering Application (MMSE2025)

Conference Location: Paris, France

Date: 25-27 July 2025

Peer Review Statement

Number of submissions: 292 Number of accepted papers: 117

Acceptance rate: 40%

Conference Organization

Conference Chairs

Emin Bayraktar, ISAE-SUPMECA/Paris

Seeram Ramakrishna, National University of Singapore, Singapore

Ephraim Suhir, Life Fellow of IEEE, ASME, SPIE, IMAPS, Fellow of APS, IoP (UK) and SPE and Associate Fellow of AIAA, Portland State University, USA

Co-Chairs

Roberto Zivieri, University of Messina, Italy

Ghenadii Korotcenkov, Department of Physics and Engineering, Moldova State University, Rep. of Moldova

Hongwei Wu, University of Hertfordshire, UK

Rezia Maria Molfino, University of Genova, President of SIRI (Italian Association of Robotics and Automation), Italy

Program Chairs

Shengyi Yang, Beijing Key Lab of Nanophonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, China

Qiang Xu, University of Hudersfield, UK

Vladislav Deev, Russian Academy of Natural Sciences, Vladimir State University, Russia

Jun Xu, Xi'an Jiaotong University, China

Editors

Jun Ma, University of South Australia, Australia

Rachid Masrour, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco

Antonio Gloria, University of Naples, Federico II, Italy

Kaige Wang, Institute of Photonics and Photonic Technology, Northwestern University, China

Sanjay M R, King Mongkut's University of Technology North Bangkok, Thailand

International Committee Members

Xiaolong Wang, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, China

Mohd Faizul Mohd Sabri, Universiti Malaya, Malaysia

Brahim Ben Fathallah, University of Tunis El Manar, Tunis

Zafar Khan Ghouri, Teesside University, UK

Martín Enrique Durán García, Departamento de Tecnología Industrial, Universidad Simón Bolívar, Venezuela

Radchenko Andrey, Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk State University, Russia

Fateh Mebarek-Oudina, Faculty of Sciences, University of 20 Août 1955-Skikda, Algeria

Sampan Rittidech, Faculty of Engineering, Mahasarakham University, Thailand Sergei Alexandrov, Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences. Russia

Han-Ki Kim, Sungkyunkwan University, Korea

Shaik Zainuddin, Department of Materials Science and Engineering, Tuskegee University, USA

Yunfeng Liu, Zhejiang University of Technology, China

Jiyong Hu, Donghua University, China

Guanglei Wu, Dalian University of Technology, China

Weiguo Li, College of Aerospace Engineering, Chongqing University, China

Li Zheng, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, China

Y. Al-Douri, University of Malaya, Malaysia

Noé Cheung, University of Campinas – UNICAMP, Brazil

Saad A. EL-Syaed Hamad, Zagazig University, Egypt

Doğuş ÖZKAN, Turkish Naval Academy of National Defence University, Turkey

Yigit Karpat, Dept. of Industrial Engineering, Bilkent University, Turkey

Jintendra Nath Roy, Department of Physics, Kazi Nazrul University, India

Ali Kandil, Egypt-Japan University of Science and Technology (E-JUST), Egypt

Soula Mohamed, École Nationale des Ingénieurs de Tunis, Tunis

Anukorn Phuruangrat, Prince of Songkla University, Thailand

Abdelaziz M. Aboraia, Al-Azhar University, Egypt

Yarusova Sofya, Russian Academy of Sciences, Russia

Gang Jian, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Evgeny S. Prusov, Vladimir State University, Russia

Ke Wang, Southern University of Science and Technology, China

Victor Yakovlevich Zyryanov, Kirensky Institute of Physics, Siberian Branch of Russian Academy of Sciences, Russia

Shimaa El-Hadad, Central Metallurgical R&D Institute Cairo, Egypt

Guanglei Wu, Dalian University of Technology, China

Yuansheng Wang, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China

Alokesh Pramanik, Department of Mechanical Engineering, Curtin University, Australia

Nataliya Kazantseva, Ural State University of Railway Transport, Russia

Ionelia Voiculescu, University Politehnica of Bucharest, Romania

Evgeny Grigoryev, Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Russia

Nataliya Vasil'evna Kazantseva, Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ural State University of Railway Transport, Russia

Oleg S. Dmitriev, Tambov State Technical University, Russia

Antonio Gloria, University of Naples, Federico II, Italy

Yuhuan Fei, Qufu Normal University, China

Arif GÖK, Kutahya Dumlupinar University, Turkey

Nikesh A. Shah, Saurashtra University, India

Sathish Kumar Palaniappan, King Mongkut's University of Technology North Bangkok, Thailand

Józef Iwaszko, Czestochowa University of Technology (CUT), Poland

Pham Thi Hong Nga, Faculty of Mechanical Engineering, HCMC University of Technology and Education, Vietnam

Yuanchang Liang, National Taiwan Ocean University, Taiwan, China

Jesús Hernández Saz, Universidad de Sevilla, Spain

Dariusz Rozumek, Opole University of Technology, Poland

Ramadan Khamice Awad, Alexandria University, Egypt

Alexandru DUMITRACHE, Romanian Academy, Romania

Alokesh Pramanik, Curtin University, Australia

Alireza Chadegani, Applied Physics Laboratory, Johns Hopkins University, USA

N. Venkateshwaran, Rajalakshmi Engineering College, Chennai

Jiyun Zhao, City University of Hong Kong, China

Nguyen Dinh Duc, Chairman, Vietnam National University, Hanoi

Gang Jian, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

Zaifa Zhou, Key Laboratory of MEMS of Ministry of Education, Southeast University, China

Shijun Liao, South China University of Technology, China

Hyun Do Yun, Chungnam National University, Korea

Yufridin Bin Wahab, Universiti Malaysia Perlis (UniMAP), Malaysia

Saad El-Sayed, Zagazig University, Egypt

Adel Shaker El-Fishawy, Menoufia University, Egypt

Mohamed Kchaou, University of Bisha, Saudi Arabia

Javad A. Esfahani, Ferdowsi university of Mashhad, Iran

Contents

Foreword <i>Emin Bayraktar</i>	V
About the Conference	vii
Section 1. Mechanical Engineering and Manufacturing Technology	
Procedure for Selection of Displacement Factors in Involute Engagement of Planetary Rotary Hydraulic Machine with Identical Numbers of Center Wheel Teeth *Dmitry A. Kurasov, Anastasia N. Korolevskikh and Irina A. Purtova	2
An Integrated Approach to Automating the Technological Process of Manufacturing Housing Parts by the Lost Wax Casting Method Igor Kovalev and Vladislav Gerashchenko	8
Devices Based on Nonlinear Wave Mechanics in Technological Processes of Manufacturing Road Surfaces Grishnyaev Igor	17
Design and Analysis of Flexible Coupler Applied to Air Compressor Fu Chen, Weiyu Chen, Maofei Men, Dongdong Tu, Chunlan Hu, Jieying Chen and Ruijun Liu	27
Improvement and Research on the Hydraulic System of Shuttle Xifeng Zhang, Lei Zhang and Zhifeng Wen	34
Rapid Design and Production of Engine Casing Based on Reverse Engineering Xuyan Cao, Tengfei Lu, Junbing Pan, Feng Zhao and Jiazhong Xu	41
Design of Large Injection Mould with SVG for Door Cladding Upper B-Pillar of Car Jixing Huang, Qiang Fei, Shuhai Wang, Heli Zhang and Jiatong Qin	47
Synthesis of a Vibration Mechanism for Separation Swinging Conveyor G.A. Timofeev, E.O. Podchasov and O.O. Baryshnikova	53
A Method for Calculating and Calibrating Structural Parameters of an Articulated Arm Coordinate Measuring Machine Rui Cheng, Zhenxing Zheng, Lei Qin, Qun Gao and Guifang Ye	60
Research on Structure and Heat Dissipation Design of Explosion-Proof Electric Control Box of Mine High-Power Charger Sancheng Fan	67
Structural Design and Analysis of Cement Mixer Yijun Zhang, Jinshan Wu, Ruijun Liu, Weiyu Chen and Fenqian Wu	73

Design of Intelligent Belt Protector Based on Elastic Adaptive Extension and Compound Physiotherapy Shengxin Huang, Lulu Wang, Oliver Lexter July Alvarez Jose and Xingda Yang	81
Design and Implementation of a Sliding Mountain Transport Vehicle Jianmin Wei, Zhengfa Li, Jian Lu, Chunlan Hu and Jieying Chen	87
Design and Study of an Integrated Domestic Pipe Detection-Unclogging-Cleaning Robot Based on Crawler Drive Yanbin Ning, Huiying You, Junxi Guo, Yihao Zhang, Peiyi Xie and Zhaohui Zheng	94
Design and Analysis of the Gear Mechanism Applied to the Cluster Hydraulic Down-the-Hole Hammer Yiqing Zhang, Chunlan Hu, Xiaochun Liu, Jian Jiang, Ruijun Liu and Zhigang Wu	100
Chip Water-Cooled Plate Heat Dissipation Influence Factors Research Kunrui Cai, Zhiwei Huang and Kangming Peng	107
Improved Design and Analysis of Water Grinder Drill Xiaochun Liu, Chunlan Hu, Jieying Chen, Feng Du, Peng Liu and Weiyu Chen	113
Heat Power Analysis of Continuous Miner Crawler Gear Reducer Zhugang Ye	120
Structural Damage Identification Based on Transmissibility Functions Xu Jing and Hongmei Zhang	126
Section 2. Materials Science and Engineering	
Optimizing Wire EDM Process Parameters for Al/10%SiC Metal Matrix Composite Using Response Surface Methodology R.A. Kapgate, V.H. Tatwawadi, Naveen Kumar and Ayushi R. Kapgate	134
The MgO Nanooxides Effect on the Weld Metal Structure Modification V. Kostin, V. Holovko and V. Zhukov	144
Study of Nanoindentation Properties of Mg-SiC/MWCNTs Hybrid Composites J.S.S. Babu, Chung Gil Kang and Min Sik Lee	153
Study on Dynamic Mechanical Properties of High-Content Rubber-Modified Asphalt Jia Wang and Huilin Ge	159
Mechanical Properties Testing of Sulfonated Oil Resin Curing Agent Reinforced Loess Jie Lai, Yun Liu, Yuan Liu, Qiannan Wang and Shanzheng Sun	165
Study on Mechanical Properties and Mix Proportion Design of Coarse Polypropylene Fiber-Reinforced Concrete (CPFRC) Ziling Zhu, Wei Cao, Xiaokun Li, Xinrong Liu, Miao Ding and Luovin Li	171

Effect of Holes on the Stress of Fibrous Materials A.M. Polatov, A.M. Ikramov, S.I. Pulatov and U.E. Adambaev	177
Investigation of the Performance of Garofalo's and Xu's Modified Sinh Laws on Modelling MCR Joanna Wendy Xu	185
TTS-Integrate: A Unified Framework for Mechanism-Resolved and Transformation-Aware Modelling in Creep Damage and Extrapolation <i>Qiang Xu and Joan Lu</i>	191
Effect of Ethylene Vinyl Acetate Content on the Impact Toughness of PP/PBT/PA6/EVA Blends Nguyen Le Cuong Thinh, Pham Thi Hong Nga, Nguyen Anh Tuan, Huynh Hong Danh, Mai Thanh Hai, Pham Quan Anh and Nguyen Vinh Tien	198
Fatigue Failure Analysis of a Winch Shaft: Synergistic Effects of Microstructural Overheating and Stress Concentration in Geometric Design <i>Jianli Zhao, Qiang Fu, Wei Wang, Huina Shan and Gao Zhen</i>	204
Study on the Influence of Vertical Welding on the Microstructure and Properties of Q345R Low-Alloy Thick Specification Steel Butt Joints Wanqin Ding, Bin Liu, Daochu Tang, Bo Pang, Jia Yang, Feng Yang and Le Ling	210
Numerical Investigation on Tubing End Joining Based on Radial Swaging with Shape Memory Alloy Jingchao Yang, Baojin Cui, Meili Hou, Wei Guo, Xiaoyan Duan, Guangjun Li, Hang Zhong and Jinfeng Zhu	217
Tempering Welding in Low-Alloy Steel: Microstructure, Property Analysis, and Temperature Field Simulation Wanqin Ding, Shuang Zhao, Wendong Wang, Jia Yang, Yaxia Qiao, Jiankun Xiong and Bixian Rong	223
Electrical Modulus Properties of Functionalized Graphene Nanoplatelets-Based Composite by Impedance Spectroscopy Solmaz Aliyeva	233
Effect of SiC Volume Fraction on Tribological Properties of SiCp/6092Al Composites Dongliang Wang, Jilin Zhang, Xiangbin Yi and Furong Ma	239
Tensile Property Evolution and Precipitation Characteristics During Single Stage Aging of a High Mg-Containing Al-Mg-Zn-Si Alloy Fei He, Kai Wen, Baiqing Xiong, Xiwu Li, Guanjun Gao, Kai Zhu, Hongwei Yan and Yongan Zhang	247
Failure Mechanism and Prevention of Chloride Stress Corrosion Cracking in S30408 Austenitic Stainless Steel Air-Cooled Tube Bundles Bin Du, Ting Yu, Bojun Zhao, Shijie Xie and Xuanhan Xiang	255

Safety Analysis of Large Radius Curved Thick Stone Curtain Wall of Exterior Wall Leiyan Zhou, Linwu Xia, Zhenwei Fan, Cheng Cheng and Ya Wang	263
Investigation on Wear Surface Roughness and Hardness Behavior of Nano B4C Reinforced Composite with Zn85-15Sn Alloy Matrix Santosh. Janamatti, Mallappa Hunasikatti, Gururaj Hatti and Madeva Nagaral	269
Restoration of Expired PLA Filament Strength Properties via Low Temperature Heat Treatment Approach Wai Heng Choong, Febianny Binti Semuil, Bih Lii Chua and Siti Nurfadilah Binti Jaini	277
Local Identification of the Elasticity Tensor of Composite Materials Using an Inverse Estimation Method Edo-Owodou Ayeleh, Kossi Atchonouglo, Yao Koumekpo, Arnaud Germaneau, Laetitia Caille and Jean-Christophe Dupre	283
On the Properties of Gas-Filled Materials with Closed Pores Under Compression <i>E.Yu. Shamparov and I.N. Zhagrina</i>	290
Enhanced Strain Measurement Accuracy in Metallic Tensile Testing Through Video Extensometry: A Comparative Analysis Türkay Muratoglu and Alpay Tamer Erturk	296
Analysis on Mechanical Properties and Strain of Expanded Post-Cast Strip in Reinforced Concrete Structure Zelin He, Huaping Tang, Wanyi Gao, Haohua Yu and Huahua Su	302
Mechanical Experimental Study on Reinforced Sandy Soil Using Styrene-Butadiene Latex and Polypropylene Fibers Jie Lai, Yuan Liu, Yun Liu, Qiannan Wang and Shanzheng Sun	308
Synergistic Strengthening in Al-Mg-Zn-Ce-Mn-Sc Alloy: Solid Solution, Nano-Precipitation and Coarsening Resistance Boyan Sun, Kai Wen, Xiwu Li, Zhihui Li, Qilong Liu, Mingyang Yu, Yongan Zhang and Baiqing Xiong	314
Study on Fatigue Evolution of Carbon Fiber Reinforced Composites for Low-Cost UAV Hao Sun, Li Chen, Yanfeng Mao, Ningmin Liu and Lei Li	326
Failure Analysis and Improvement Recommendations for Steam Pipelines in the Dehydrogenation Unit of a Styrene Plant Guogen Huang, Jinhui Yang, Chenyi Shi, Huiting Xu and Zhiguo Zhou	335
Finite Element Analysis of Stress Distribution in Functionally Graded Materials Huajun Zheng, Lulu Wang and Rocel Gualberto	342
Investigation of the Thermal Conductivity and Properties of Epoxy Resin with Varying Crosslinking Densities Xukang Zhu, Yan Shi, Gang Hu, Chunlin Zhang, Lin Cheng and Yuedong Tan	348

Truly Mechanism Based Develop Creep Damage Constitutive Equations for Wide Range of Stress <i>Qiang Xu, Xin Yang and Joan Lu</i>	354
Effect of LDPE Percentage on the Impact Strength of LDPE/Recycled-PBT/PA6 Blends Using Waste from Toothbrush Filaments Doan Dai Duong, Le Hoai Ngan, Pham Thi Hong Nga, Nguyen Vinh Tien, Pham Quan Anh and Nguyen Thanh Tan	360
Dynamic Simulation of Melt Flow and Solidification in Melt Spinning of Polyphenylene Sulfide Qiang Fei, Biao Jin, Binchun Jiang, Menghua Wu and Mi Zhang	366
Section 3. Electrical, Electronic and Automation Technology	
Vibration Control Using a Quasi-Zero Stiffness Inerter: The Tuning Approach Volodymyr Puzyrov, Nataliya Losyeva and Nina Savchenko	373
Surface Defect Formation on Substrates in Silicon Technology Mykola Kukurudziak	379
Design of Intelligent Layout Device for Power Transmission Line Crossing Network Junjun Liang	387
An Electronic Control Protection Device and Control Method for a Transmission System Test Bench Yumeng Wang, Xin Wang, Xu Zhang, Xiangyu Li, Yuhong Li and Dingci Liu	393
Study of Deformation and Stress in Electric Microactuators Kangming Peng, Zhiwei Huang, Jiaji Chen and Kunrui Cai	399
Research on the Control System for Load Operation of Transmission Line Material Ropeway Lianhui Ji, Chen Liu, Kewei Luo, Jian Qin, Shaoyuan Lin and Fei Wang	406
Optimizing Solar Energy Harvesting: A Smart Dual-Axis Tracking System Integrating AI and IoT Technologies Riad Taha Al-Kasasbeh, Tamer W. Abu Ghoush, Noor A. Bani-Moustafa, Saqer A. Al-Sakkaf, Osama M. Al-Habahbeh, Nadin Habash, Ashraf Shaqadan, Omar Badran, Ismail Masalha and Yousif Eltous	412
Hybrid Photovoltaic System with Thermal Collector and Heat Storage for Sustainable Energy Supply in Remote Areas Djamila Rekioua, Nabil Mezzai, Toufik Rekioua and Chokri Ben Salah	422
Study on the Mechanism of PN Emission for Diesel Engines in New Energy Vehicle Xiaoxiao Zeng, Guorui Jia, Qi Teng, Chen Tan, Bojun Yin, Qingsi Meng, Zidu Yang and Huanhuan Ren	429

Intelligent Temperature Control System Based on Microcontroller Internet of Things Shunping Liang, Zhiwei Huang, Yongyin Deng, Qiuhua Yang and Kunrui Cai	435
Design of the Structure and Control System for an Automatic Installation Robot for Distribution Network Voltage Testing and Grounding Ring Shaowei Lin and Hanbin Xu	441
Integrated System Development and Experimental Validation of a Hot-Line Tapping Robot for Distribution Line Yuee Wan, Dingji Zeng, Jingfang You and Shuiqiang Zou	447
Design and Implementation of Multi-Action Load Control System Yanhua Liu, Gaoqing He, Yifan Wang and Junnan Yang	453
SnO ₂ : Li Structures for Lithium Battery Anodes: AB Initio Calculations Amina Larabi, Ammaria Mahmoudi, Maha Ayat, Saloua Merazga and Mourad Mebarki	459
Design of a Modular PV Solar Tracking System Riad Taha Al-Kasasbeh, Anas Alhasan, Abdullah Awamleh, Omar Khasawneh, Ahmad Alsabbagh, Osama M. Al-Habahbeh, Nadin Habash, Ashraf Shaqadan, Omar Badran and Ismail Masalha	468
Computational Cognitive Network-Based Radiological Mechanism Inspection Technology and Digitally Accessible High-Tech Investigation Robot for Radiological Ground Surveys, Nuclear Environment Inspection, and Radioactive Substance Screening Abdullah All Mamun Anik, Mosammat Sadia Akter Moon, Ahnaf Tahmid Chowdhury, Kristy Gourab Sinha, Safkat Islam Safin, Fahim Sabab Siddique, Md Zobaer Hossain Bhuiyan and Talha Alam	477
Recent Trends in the Use of Remote Sensing Technologies in Autonomous Agricultural Robotics Muhammet Fatih Aslan	487
Research on Mechanism Design and Gait Planning of Transmission Tower Foot Nail Climbing Robot Jian Zhang, Lanlan Liu, Yong Peng, Zhiyong Deng, Yuqun Fang and Xunbao Chen	496
Development Status and Prospects of Urban Drainage Pipe Cleaning Robots Junxi Guo, Zhaohui Zheng, Yihao Zhang, Xuanbin Wu, Jiaxi Zhang and Minggao Guo	502
An Intelligent Robotic Meteorological Observation System Utilising IR and Piconet Technologies for Ecosystem Protection and Automated Advanced Machining Environmental Management Abdullah All Mamun Anik, Mosammat Sadia Akter Moon, Talha Alam and Muhammad Faraz Mahmood	508
Frame for UAV Fault Diagnosis in Noisy Environments Yuchen He, Gengshen Zhang, Husheng Fang, Keming Qin and Jun Yan	518

Dynamic Calculation Method for Cable Laying Considering Bending Stiffness Jian Qin, Ronghao He, Feikai Zhang and Bo Lin	526
Research on the Application of Internet of Things Technology in Intelligent Supervision of Elevators Hongjun Shi	534
Design and Comparison of PID Control Configurations for Nonlinear CSTR Performance Optimization Aravind Pitchai Venkataraman, Sathis Kumar Murugesan, Muhilan Paramasivam, Suleyman Malikmyradovich Nokerov and S. Sutha	542
Path Planning Method of Cleaning Robot in Cooling Pool of Converter Station Based on A* Algorithm Yu Yan, Ruiwu Ren, Jiusong Jiang, Long He, Rong Wu, Quanwei He and Wei Jiang	549
Research on the Application of Pre-Stage SCR on NOx Emission Control for Heavy-Duty Diesel Engines in New Energy Vehicles Zhancheng Dou, Zidu Yang, Qingtang Zhang, Chen Liu, Chuan Chen, Huanhuan Ren and Guorui Jia	555
The Negative Derivative Feedback Controller Tuning for Vibration Suppression Volodymyr Puzyrov, Nataliya Losyeva, Nina Savchenko and Daria Termenzhy	561
Design and Implementation of an Intelligent Over Voltage and Surge Protection System for Solar Inverters Osa Edosa, Ayinde O. Yusuf, Akhabue S. Ehie, Joshua Anslem, Oboh E. Victory and Eghosasere Eghomwanre	568
Section 4. Simulation Technology and Applications	
Parametric Modeling and Self-Propulsion CFD Optimization of the Ellipsoidal Rudder Ball Peiwen Ye, Haotian Du and Baoji Zhang	577
Numerical Simulation of Superplastic Forming / Diffusion Bonding for 2198 Al-Li Alloy Four-Layer Components Yao Chen, Senbao Jiang, Yizhe Xu, Rongsen Pu and Xifeng Li	583
Parametric Modeling and CFD Simulation Method of the PFFP Haotian Du, Qiqing You and Baoji Zhang	590
Performance Research and Optimization of Dual-Stage Manifold Channel Cooling Plate for Energy Storage Li-Ion Battery Shaoping Zhou, Jun Ren, Benjun Xie and Juncheng Zhou	596
A Python-Based Approach for Automatic Modeling and CFD Simulation of PBCF Haotian Du, Peiwen Ye and Baoji Zhang	602
··/ · · · · · · · · · · · · · · · · · ·	

Numerical Simulation Study on the Nucleation Rate of Silver Iodide Catalyst Based on Fluent Maoyu Wang, Yunlong Gao, Haitao Qiao, Shuhong Ba, Shengxu Su and Yueying Miao	608
The Influence of Particle Concentration and Particle Diameter on Gas Holdup in a Bubble Column Reactor Under the Wire Mesh Coupled Solid Particle Strengthening Method Xuehui Xu and Guanghui Chen	618
Mathematical Simulation of Cricket Ball Trajectory and the Effect of Key Factors Naveen Kumar, Jyoti Kumari and Daisy Mudiar	624
Mining Multi Axis Vehicle Through the Prediction and Simulation of Performance Jing Yan	633
Fluid Simulation Analysis and Optimization of Pump Jet Thruster Shell Based on SolidWorks Liangcheng Xue, Heli Zhang, Zijia Zhuang, Haopeng Chen and Yingxi Hu	639
Section 5. Technology and Applications of Civil Engineering	
Mechanism and Remediation of Landslides Due to Heavy Rainfall in Tropical Regions: A Case Study Peng Sun, Fangtong Wang, Huizhong Zhang and Qingxian Jia	646
Methodology for Determining the Failure Load of Steel Fibre Concrete Beams Subjected to Temperature Influence Svetlana Berestyanskaya, Evgeniy Galagurya, Maksim Kovalev, Larisa Kravtsiv and Elena Opanasenko	653
Advances in Wind-Induced Vibration Control of High-Rise Buildings Caimin Zhong, Yiqiang Chen, Lijuan Sang, Haibo Liu and Kai Wang	661
Research on Stability Assessment and Application of Landscape Ecological Retaining Wall Based on Finite Element Analysis Ke Xu, Jian Wang, Sheng Feng and Longjin Wu	668
Study on Temperature Field of Different Structural Layers of Asphalt Pavement in Hebei Yingbin Cui, Chao Sun, Zhendong Tan, Huiyong Zhou and Jiahui Liu	676
Research on Key Construction Technologies of Composite Slabs Wenlun Su, Kai Yang, Yanhui Lu and Cong Chen	683
Research on Quality Improvement of Non Contact Intelligent Leveling Technology in High Precision Track Road Construction Ming Huang, Zhiqiang Cheng, Haichun Le, Ming Cai and Haili Jiang	689
A Dormitory Building Leakage Maintenance and Management Ya Wang, Bicun Tao, Leiyan Zhou, Linwu Xia and Chengxu Zhao	695

Research Progress on Pavement Distress Detection Based on Deep Learning Jian Liang, Yan Zhang, Fang Ruan and Xin Qu	702
Application of Unmanned Intelligent Paving Construction Technology in Low Clearance North Cross Passage <i>Qifu Yuan, Huaqi Wu, Guangqiang Yang, Fengwei Zuo and Yao Luo</i>	708
Research on Underwater Pipeline Damage Sensing Method Based on Machine Vision Junda Wu and Xiaomin Shi	714
The Application of Construction Technology for Prefabricated Composite Slabs Yicong Wang, Zhihua Zhong, Yangchun Zeng and Yihao Wang	722
Construction Technology of Main Structure of Inclined Building Xuefei Nan, Wei Xiao, Youwei Wang, Wei Tian, Shiliang Wu, Feilong Huang and Fan Wu	728
Sensitivity Analysis of Modification Method for Soil Parameter Transformation Model Shuo Zheng, Weijiang Chu, Fangtong Wang and Yichen Li	735
Section 6. Interdisciplinary Application and Engineering Technology	
CFD-Driven Optimization of Integrated PFFP-RB-FPHC Systems for Propulsion Efficiency in a Bulk Carrier Peiwen Ye, Jiajun Wu and Baoji Zhang	742
Numerical Study on Liquid-Solid Flow Characteristics in a Pulsed Scrubber Zhixin Yu and Weiwen Wang	748
A Case Study of Lemongrass Oil Extraction Methods and Their Effect on Oil Composition G Bhanu Radhika, G Srinivas, B Bhaskar and B Karuna	755
Enhancing the Protection Performance of Flared End Terminals for Roadside Guardrails: A Recycling-Based Approach Kangwen Li, Yunzhuang Zheng and Zhigang Liu	765
Power-Aware Digital Beamforming for LEO Satellites: Architectures, Challenges, and Performance Insights Wahiba Belgacem, Nassima Belgacem and Bekkar Djelloul Saiah	773
Thermal Management of Battery Modules via Hybrid Cooling: Integrated Heat Pipe and Composite Phase Change Material Hanbang Chen, Biao Jin, Yixiang Ke, Delin Kong, Tong Zhang, Julong Jin and Yinyi Li	784
Research on Static-Dynamic Indicator System and Data Requirements for Digital Transformation of Traffic Safety Facilities Yunzhuang Zheng, Kangwen Li, Shufang Ge, Zhaoxian Wang and Xiaoling Zhi	790

	xix
Safety Management of Domestic Precision Measuring Instruments Baofu Zhu, Youwei Xie, Xieyu Shu, Boran Jiang and Zhiwei Yu	797
Ultimate Strength Assessment of Welded Stiffened Panels Under Extreme Cyclic Loading Using Deep Neural Network Dongyang Li and Zhen Chen	804
Automatic Launching of Coal Port Under the Influence of Multiple Factors Throughput Prediction Model Chunjuan Wang, Zeqi Li and Dan Zhou	812
Wind Drag Analysis of Deck Carriers Based on CFD Yuanbiao Bao, Qiqing You and Baoji Zhang	818
Study on the Impact of Two-Stage SCR System Degradation on Nox Emissions in New Energy Vehicle Ziyang Dai, Bojun Yin, Zhaoxue Qu, Chuan Chen, Chen Liu, Guorui Jia and Huanhuan Ren	825
Author Index	831

Section 1

Mechanical Engineering and Manufacturing Technology

© 2025 The Authors.

This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0). doi:10.3233/ATDE251003

Vibration Control Using a Quasi-Zero Stiffness Inerter: The Tuning Approach

Volodymyr PUZYROV a,b, Nataliya LOSYEVA a,b and Nina SAVCHENKO c,1 ^a Universidad de Barcelona, Spain ^bNizhyn Mykola Gogol State University, Ukraine ^c National Aerospace University, Ukraine

Abstract. The use of dynamic vibration absorbers remains one of the most effective methods for mitigating unwanted oscillations in various engineering applications. Nonlinear absorbers, such as those based on Quasi-Zero Stiffness (QZS) and Nonlinear Energy Sinks (NES), offer significant advantages in terms of energy dissipation over a wide frequency range. This paper focuses on a hybrid system composed of a single-degree-of-freedom QZS main structure with an attached NEStype inerter absorber. An analytical approach is presented to derive the frequencyamplitude relation (FAR), accounting for six key dimensionless parameters that describe the system dynamics. Although the general expression for FAR is complex, for a given mechanical configuration of the main structure, it becomes feasible to determine the optimal damping coefficient and nonlinear stiffness of the absorber using a straightforward analytical-numerical method. The practical absence of linear stiffness components enables the absorber to operate efficiently under external harmonic excitation. Numerical integration of the system's equations of motion demonstrates strong agreement with theoretical predictions and confirms the effectiveness of the proposed tuning methodology in suppressing vibrations.

Keywords. Vibration suppression, quasi-zero stiffness, nonlinear energy sink, averaging method, tuning methodology

1. Introduction

The tuned mass damper (TMD) technology is one of the most promising methods to suppress and control unwanted vibrations. It is mechanically simple, cost-effective, has reliable operation and has attracted many efforts of researchers during the last decades

One of the notable areas of research in recent years is the use of the quasi-zero stiffness absorbers (QZS). They are realized by combining the positive stiffness provided by the nonlinear springs and the negative stiffness generated by different sources such as oblique springs [3], oblique inerters [4], the centrifugal forces [5], cam-roller-springs [6], limb-inspired bionic structure which generates negative stiffness via torsion springs [7] etc. In this regard, we also draw attention to the works [8-13].

Another perspective is granted by Nonlinear energy sink (NES) which presents an expediently designed nonlinear oscillator without positive linear stiffness. NES, as an essentially nonlinear system, can suppress vibrations over a wide frequency range and is

¹ Nina SAVCHENKO, Corresponding author, National Aerospace University, Ukraine; E-mail: n.savchenko@khai.edu.

widely used in various problems of nonlinear dynamics. The detailed review of this research area is presented in [2]. Let's note some results from recent years. In paper [14] the vibration responses of the system consisting of the linear oscillator coupled with traditional NES and a piecewise spring introduced between the NES and the ground were analyzed theoretically, and the results were verified experimentally. Yang et al. [4] investigated a nonlinear inertance mechanism (NIM) for vibration mitigation. In [15] the Hybrid Vibration Isolator with NES that combines QZS and nonlinear ineritance mechanisms (NIM) for broadband vibration control was studied.

In the present paper we consider the approximate dynamical model of a single DoF QZS main system with an attached NES inerter. The analytical scheme of obtaining frequency-amplitude relation (FAR) is proposed. Due to the presence of six dimensionless parameters this relation is cumbersome, but for given mechanical configuration of the main structure it is possible to find optimal damping and nonlinear stiffness of the inerter to suppress responses in a wide frequency range by a rather simple analytically-numerical way.

2. Formulation of the Problem

We will consider a mechanical model consisting of a single-degree-of-freedom primary mass with the quasi-zero stiffness and attached inertial nonlinear energy sink (NES) [8, 9, 16]. Schematically this system is shown in figure 1.

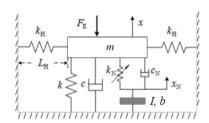


Figure 1. A single DoF model with NES inerter attached.

In order to demonstrate our tuning methodology, we accept some simplifications as it was done in [16], thus our initial dynamic equations read

$$m\ddot{x} + c\dot{x} + kx + 2\left(1 - \frac{L_0}{L_H}\right) k_H x + \frac{L_0}{L_H^3} k_H x^3 + c_N \left(\dot{x} - \dot{x}_N\right) \\ + k_N \left(x - x_N\right)^3 + F_e \cos(\omega t) = 0, \\ bx_N^2 + c_N \left(\dot{x}_N - \dot{x}\right) + k_N \left(x_N - x\right)^3 = 0.$$
 (1) The dimensionless form of the approximate Eq. (1) is

$$\ddot{x_1} + 2\zeta \, \dot{x_1} + \alpha x_1 + \tilde{\beta} x_1^3 + 2\zeta_N \, (\dot{x_1} - \dot{x_2}) + K_N \, (x_1 - x_2)^3 + f_e \cos(\tilde{\Omega}\tau) = 0,$$

$$\mu \ddot{x_2} + 2\zeta_N \, (\dot{x_2} - \dot{x_1}) + K_N \, (x_2 - x_1)^3 = 0,$$
(2)

where

$$\begin{split} x_1 &= \frac{x}{L_Q} \,, x_2 \,=\, \frac{x_N}{L_Q} \,, L_Q \,=\, \sqrt{L_0^2 \,-\, L_H^2}, \omega_0^2 \,=\, \frac{k}{m} \,, \tau \,=\, \omega_0 t, \widetilde{\Omega} \,=\, \frac{\omega}{\omega_0}, \\ \zeta &= \frac{c}{m \omega_0} \,, \alpha \,=\, 1 \,+\, 2 \, \left(1 \,-\, \frac{1}{\varepsilon}\right) \kappa_H, \widetilde{\beta} \,=\, \left[\left(\frac{1}{\varepsilon}\right)^3 \,-\, \frac{1}{\varepsilon}\right] \kappa_H, \varepsilon \,=\, \frac{L_H}{L_0}, \end{split}$$

$$\kappa_H = \frac{k_H}{k}, \zeta_N = \frac{c_N}{m\omega_0}, K_N = \kappa_N L_Q^2, \kappa_N = \frac{k_N}{k}, \mu = \frac{b}{m}, f_e = \frac{F_e}{L_Q k}.$$
(3)

For the convenience of subsequent transformations, we present equations (2) in matrix form

$$2\widetilde{\Omega} M x'' + D x' + K x = \Phi(\tau, x_1, x_2).$$

Here

$$\begin{split} \boldsymbol{M} &= \begin{pmatrix} \mu + 1 & -\mu \\ -\mu & \mu \end{pmatrix}, \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \boldsymbol{D} = diag(\zeta, \zeta_N), \boldsymbol{K} = diag(\alpha, 0), \\ \boldsymbol{\Phi} &= \begin{pmatrix} f_e \cos \widetilde{\Omega} \tau - \widetilde{\beta} x_1^3 \\ \kappa_N x_2^3 \end{pmatrix}, \end{split}$$

where the prime means the derivative on time τ .

With the transformation $x_j = u_j \cos \widetilde{\Omega} \tau + v_j \sin \widetilde{\Omega} \tau$, $x_j' = -u_j \widetilde{\Omega} \sin \widetilde{\Omega} \tau + v_j \widetilde{\Omega} \cos \widetilde{\Omega} \tau$ (j = 1, 2) and applying the method of averaging (as it was done in [17]), we get the simplified version of the system

$$\widetilde{\Omega} \mathbf{M} \, \mathbf{u}' + \frac{1}{2} \, \left[\mathbf{D} \mathbf{u} + (\mathbf{M} - \mathbf{K}) \mathbf{v} \right] = \frac{3}{8} \, \begin{pmatrix} \widetilde{\beta} \, v_1 \, (u_1^2 + v_1^2) \\ \kappa_N \, v_2 \, (u_2^2 + v_2^2) \end{pmatrix},$$

$$\widetilde{\Omega} \mathbf{M} \, \mathbf{v}' + \frac{1}{2} \left[(\mathbf{K} - \mathbf{M}) \mathbf{u} + \mathbf{D} \, \mathbf{v} \right] = \frac{3}{8} \, \begin{pmatrix} \widetilde{\beta} \, u_1 \, (u_1^2 + v_1^2) + \frac{4}{3} f_e \\ \kappa_N \, u_2 \, (u_2^2 + v_2^2) 2 \end{pmatrix}, \tag{4}$$

which do not contain the time dependent terms, as all of them have zero average value over $2\pi/\widetilde{\Omega}$ time period.

3. Frequency-Amplitude Relations and Tuning Methodology

The stationary points of system (1) correspond to quasi-periodic solutions of equations (2) and are determined by equalities

$$\begin{split} \zeta \widetilde{\Omega} u_{1} + \left(\mu \widetilde{\Omega}^{2} - \alpha + \widetilde{\Omega}^{2}\right) v_{1} - \mu \widetilde{\Omega}^{2} v_{2} - \frac{3}{4} \widetilde{\beta} v_{1} (u_{1}^{2} + v_{1}^{2}) \\ &= 0, -\mu \widetilde{\Omega}^{2} v_{1} + \zeta_{N} \widetilde{\Omega} u_{2} + \mu \widetilde{\Omega}^{2} v_{2} - \frac{3}{4} \kappa_{N} v_{2} (u_{2}^{2} + v_{2}^{2}) = 0, \\ \left(\alpha - \mu \widetilde{\Omega}^{2} - \widetilde{\Omega}^{2}\right) u_{1} + \zeta \widetilde{\Omega} v_{1} + \mu \widetilde{\Omega}^{2} u_{2} + \frac{3}{4} \widetilde{\beta} u_{1} (u_{1}^{2} + v_{1}^{2}) + f_{e} = 0, \\ \mu \widetilde{\Omega}^{2} (u_{1} - u_{2}) + \zeta_{N} \widetilde{\Omega} v_{2} + \frac{3}{4} \kappa_{N} u_{2} (u_{2}^{2} + v_{2}^{2}) = 0. \end{split}$$
 (5)

To simplify the calculations, we temporarily introduce complex variables $z_j = u_j + i v_j$, $\bar{z}_j = u_j - i v_j$ and obtain the following system of nonlinear algebraic equations,

$$(\alpha - \mu \widetilde{\Omega}^2 - \widetilde{\Omega}^2) z_1 + \mu \widetilde{\Omega}^2 z_2 + \frac{3}{4} \widetilde{\beta} z_1 \rho_1 - i \zeta \widetilde{\Omega} z_1 = 0,$$

$$\mu \widetilde{\Omega}^2 z_1 - \mu \widetilde{\Omega}^2 z_2 + \frac{3}{4} \kappa_N z_2 \rho_2 - i \zeta_N \widetilde{\Omega} z_2 = 0, CC = 0,$$
 (6)

where $\rho_i = z_i \bar{z}_i$ (j = 1, 2) and $C\bar{C}$ denotes complex conjugate counterparts.

System (6) cannot be solve directly with respect to variables $z_1, \bar{z}_1, z_2, \bar{z}_2$, and in order to obtain the frequency-amplitude relations we use the following "trick". Solving formally equations (6) with respect to these variables (ignoring presence of ρ_1, ρ_2 in

them) and write down identities $\rho_j - z_j \bar{z}_j = 0$, (j = 1, 2). After simplification we have two polynomials in ρ_1, ρ_2 , namely

 $P_1 = k_{13}\rho_1^3 + k_{12}\rho_1^2 + k_{11}\rho_1 + k_{10}, \ P_2 = k_{22}\rho_1^2 + k_{21}\rho_1 + k_{20}, \tag{7}$

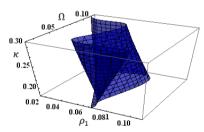
where

$$k_{13} = \beta^{2}(\kappa^{2}\rho_{2}^{2} - 2\kappa\Omega\mu\rho_{2} + \Omega^{2}\mu^{2} + \zeta_{N}^{2}\Omega),$$

$$k_{12} = 2\beta[\kappa^{2}(-\Omega\mu + \alpha - \Omega)\rho_{2}^{2} + \kappa\Omega\mu(\Omega\mu - 2\alpha + 2\Omega)\rho_{2} + \Omega(-\Omega^{2}\mu^{2} + (\alpha\mu^{2} - \zeta_{N}^{2}(\mu + 1)\Omega + \alpha\zeta_{N}^{2})],$$

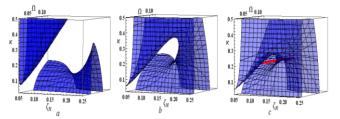
$$k_{11} = \kappa^{2}(\Omega^{2}\mu^{2} + [2(\Omega - \mu))\Omega\mu + \zeta^{2}\Omega + (\Omega - \alpha)^{2}]\rho_{2}^{2} + 2\kappa[-(\Omega - \mu)\Omega^{2}\mu^{2} - ((\Omega - \mu)^{2} + (\alpha\mu^{2} - \zeta_{N}^{2}(\mu + 1)\Omega + \alpha\zeta_{N}^{2})],$$

$$k_{11} = \kappa^{2}(\Omega(\zeta + \zeta_{N})^{2} + (\Omega - \mu)^{2})\Omega^{2}\mu^{2} + 2(\Omega - \mu)\zeta_{N}^{2}\Omega^{2}\mu + \zeta^{2}\zeta_{N}^{2}\Omega^{2} + \Omega\zeta_{N}^{2}(\Omega - \mu)^{2}, k_{10} = [-\kappa^{2}\rho_{2}^{2} + 2\kappa^{2}\Omega\mu\rho_{2} - (\Omega^{2}\mu^{2} + \zeta_{N}^{2})\Omega^{2}]f_{e}^{2},$$


$$k_{22} = \beta^{2}[\kappa^{2}\rho_{2}^{3} - 2\kappa\Omega\mu\rho_{2}^{2} + (\Omega^{2}\mu^{2} + \zeta_{N}^{2}\Omega)\rho_{2}],$$

$$k_{21} = 2\beta[\kappa^{2}(\alpha - \Omega(\mu + 1))\rho_{2}^{3} + \kappa\Omega\mu[(\mu + 2)\Omega - 2\alpha]\rho_{2}^{2} + (-\Omega^{2}\mu^{2} + (\alpha\mu^{2} - \zeta_{N}^{2}(\mu + 1))\Omega^{2} + \alpha\zeta_{N}^{2})\Omega\rho_{2}],$$

$$k_{20} = \kappa^{2}[(\mu + 1)^{2}\Omega^{2} + (\zeta^{2} - 2\alpha\mu - 2\alpha)\Omega + \alpha^{2}]\rho_{2}^{3} - 2\kappa\mu\Omega((\mu + 1)\Omega^{2} - (\alpha\mu - \zeta^{2} + 2\alpha)\Omega + \alpha^{2})\rho_{2}^{2} + \Omega(\Omega^{3}\mu^{2} + ((\mu + 1)^{2}\zeta_{N}^{2} + \zeta^{\mu}^{2}(2\zeta_{N} + \mu) - 2\alpha\mu^{2})\Omega^{2} + ((\zeta^{2} - 2\alpha\mu - 2\alpha)\zeta_{N}^{2} + \alpha^{2}\mu^{2})\Omega + \alpha^{2}\zeta_{N}^{2}]\rho_{2} - f_{e}^{2}\Omega^{2}\mu^{2},$$


$$\Omega = \widetilde{\Omega}^{2}, \beta = \frac{3}{4}\widetilde{\beta}, \kappa = \frac{3}{4}\kappa_{N}.$$

Now we can obtain FAR for ρ_1 as resultant of polynomials P_1, P_2 with respect to variable ρ_2 (or FAR for ρ_2 in a similar way). This polynomial $P(\rho_1)$ has ninth oder on ρ_1 and is bulky enough to be presented here. This polynomial may be considered as implicit function ρ_1 on parameters $\Omega, \zeta_N, \kappa, \varepsilon, \kappa_H, \alpha, \beta, f_e, \mu, \zeta$. Anyway, for given parameter set of primary mass this can provide enough information in order to tune the inerter I. If we wish suppress responses of primary mass in a wide frequency band, we need to minimize the maximum value of ρ_1 by appropriate choice of parameters ζ_N, κ . Geometrically, we have hyper-surface in R^4 ($\rho_1, \Omega, \zeta_N, \kappa$) and are interested in values of inerter parameters where this h-surface has a "concavity" in ρ_1 direction (figure 2).

Figure 2. Shape of hyper-surface $P(\rho_1, \Omega, \zeta_N, \kappa) = 0$ for fixed value of $\zeta_N = 0.12$.

Technically the search of optimal pair (ζ_N, κ) may be realized in a following way. Let ρ_* is the maximal height of FA curve (for chosen pair (ζ_{N_0}, κ_0) , then straight line $\rho_1 = \rho_* + \varepsilon$ does not intersect this curve, that is system $P(\rho_1, \Omega, \zeta_{N_0}, \kappa_0) = 0$, $\rho_1 = \rho_* + \varepsilon$ is inconsistent. Based on this fact we can use a simple iterative procedure to find optimal pair (ζ_N, κ) . For greater clarity we choose parameters of main mass according to [16], which leads to $\varepsilon = 0.7, \kappa_H = 1.167, \alpha = -2.8 \cdot 10^{-4}, \beta = 1.3, f_e = 0.015, \mu = 1, \zeta = 0.0189$. Taking it sequentially $\rho_1 = \{0.09, 0.08, 0.072\}$ we seeking where the "hole" in surface P = 0 is vanishing (in other words the ray $\zeta_N = \zeta_{N_{opt}}$, $\kappa = \kappa_{opt}$ does not "touch" this surface). Such a pair $\zeta_N \approx 0.135, \kappa \approx 0.23$ exists for $\rho_1 = 0.072$ and does not exist for $\rho_1 = 0.071$. Thus minimal possible value for responses peak (in terms of ρ_1) is ≈ 0.072 . This is illustrated in figure 3.

Figure 3. Visualization of search technique for appropriate set on ζ_N , κ . (a): $\rho_1 = 0.09$, (b): $\rho_1 = 0.08$, (c): $\rho_1 = 0.072$.

The corresponding FA curve is shown in figure 4.

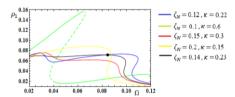
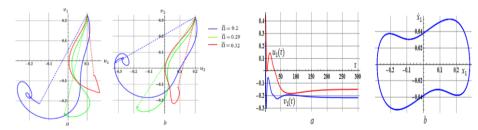



Figure 4. FA curves for different values on inerter damping and nonlinear stiffness.

4. Discussion and Numerical Validation

Let us compare the results obtained on the basis of the proposed scheme with the results of numerical integration of equations (4). As can be seen in figure 3, the maximum response value is achieved at $\Omega \approx 0.82$. Substituting $\widetilde{\Omega} = 0.284$ into equations (5), we find $u_1 = -0.0182, v_1 = -0.2671, u_2 = -0.1773, v_2 = -0.2399$. For frequency values $\widetilde{\Omega} = \{0.2, 0.284, 0.32\}$, as shown in figure 5, the response values (the radius vector of the attraction point) will be somewhat smaller.

Figure 5. Projections of phase trajectories in variables u, v. Points of attraction correspond to solutions of the system (3.1).

Figure 6. (a) Time histories for $u_1(\tau)$, $v_1(\tau)$; (b) The limit cycle in dimensionless displacement and velocity.

As can be seen from figure 6a, after $\tau \approx 15$ the variables u,v change slowly, which confirms the appropriateness of the averaging procedure. The limit cycle with respect to variables x_1, \dot{x}_1 is shown in figure 6b. Note also that for the "empirically" selected pair $\zeta_N = 0.1, \kappa = 0.6$ (the green curve in figure 4), and $\widetilde{\Omega} = 0.25$ the system has three real solutions, two of which correspond to stable stationary points. Accordingly, a pitchfork bifurcation takes place in the frequency range (0.61, 0.81).

5. Conclusion

The article discusses the problem of passive suppression of oscillations caused by external harmonic excitation. The practical absence of a linear component of stiffness is essential, which is achieved by using the QZS of the main structure and NES of the absorber. Analytical scheme to obtain frequency-amplitude relation is proposed. Although in general form (with unknown mechanical parameters) the resulting expression is cumbersome, for a given main structure the search of optimal absorber configuration is simple enough. The results of numerical integration of the equations of motion show good agreement with the calculations. The future work will involve the implementation of an asymptotic approach in order to simplify key relations between mechanical parameters of the system and response magnitudes.

References

- Yang F, Sedaghati R, Esmailzadeh E. Vibration suppression of structures using tuned mass damper technology: A state-of-the-art review. J. Vib. Control. 2022; 28(7–8): 812–836.
- [2] Ding H, Chen LQ. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 2020; 100(4): 3061–3107.
- [3] Zhao F, Ji JC, Ye K, Luo Q. Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal Process. 2020; 144: 106975.
- [4] Yang J, Jiang JZ, Neild SA. Dynamic analysis and performance evaluation of nonlinear inerter-based vibration isolators. Nonlinear Dyn. 2019; 99(3): 1823–1839.
- [5] Guo H, Cao Z. A quasi-zero stiffness nonlinear absorber based on centrifugal force. Lecture Notes in Electrical Engineering, Springer, Singapore, 2024; 1152.
- [6] Zhou JX, Wang XL, Xu DL, Bishop S. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. J. Sound Vib. 2015; 346: 53–69.
- [7] Zeng R, Wen G, Zhou J, Zhao G. Limb-inspired bionic quasi-zero stiffness vibration isolator. Acta Mech. Sin. 2021137(7): 1155–1170.
- [8] Carrella A, Brennan MJ, Waters TP, Lopes V. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. Int. J. Mech. Sci. 2012; 55: 22–29.
- [9] Zhang Z, Lu ZQ, et al. An inertial nonlinear energy sink. J. Sound. Vib. 2019; 450: 199–213.
- [10] Chen T, Zheng Y, Song L, et al. Design of a new quasi-zero-stiffness isolator system with nonlinear positive stiffness configuration and its novel features. Nonlinear Dyn. 2023; 111: 5141–5163.
- [11] Puzyrov V, Losyeva N, Savchenko N. Parametric analysis of the dynamics of a nonlinear vibration isolator. Adv. Transdiscip. Eng. 2023: 391–396.
- [12] Puzyrov V, Losyeva N, Savchenko N. Nonlinear vibration isolator with softening spring and nonlinear damping. Adv. Transdiscip. Eng. 2024; 58: 503–511.
- [13] Xing ZY, Yang XD. A combined vibration isolation system capable of isolating large amplitude excitation. Nonlinear Dyn. 2024; 112: 2523–2544.
- [14] Geng XF, Ding H, et al. Dynamic design of a magnetic-enhanced nonlinear energy sink. Mech. Syst. Signal Process. 2023; 185: 109813.
- [15] Chen J, Yang Q, Liu J, et al. Nonlinear energy sink-enhanced hybrid vibration isolator with quasi-zerostiffness and nonlinear inerter for broadband suppression. Nonlinear Dyn. 2025.
- [16] Zhang Z, Zhang YW, Ding H. Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 2020.
- [17] Awrejcewicz J, Cheaib A, et al. Responses of a two degrees-of-freedom system with uncertain parameters in the vicinity of resonance 1:1. Nonlinear Dyn. 2020; 101: 85–106.