
ORIGINAL PAPER

Responses of a two degrees-of-freedom system
with uncertain parameters in the vicinity of resonance 1:1

Jan Awrejcewicz . Akram Cheaib . Nataliya Losyeva . Volodymyr Puzyrov

Received: 21 July 2019 / Accepted: 18 May 2020 / Published online: 26 June 2020

� The Author(s) 2020

Abstract We analyze the dynamics of a nonlinear

mechanical system under the influence of an external

harmonic force. The system consists of a linear

oscillator (primary mass) and attached nonlinear

dynamic absorber. It is supposed that the frequency

of the external force is close to the natural frequency of

the main mass. Assuming that the parameters of the

system are uncertain, the stability conditions of the

stationary regimes of the averaged equations are

obtained analytically; these regimes correspond to

the quasi-periodic motions of the original input

system. An analytical approach to the problem of

selecting the parameters of a dynamic absorber is

proposed in order to reduce the amplitude of oscilla-

tions of the main system. The results obtained are

compared with the results of the numerical integration

of the equations of the motion with different initial

conditions and parameter values.

Keywords Nonlinear vibration absorber � Resonant
frequency � Stability � Mitigation of the responses �
Hardening spring � Parameter dependency

1 Introduction

In recent decades, a number of researchers have made

significant efforts to solve the problem of dissipating

the excessive vibration energy of mechanical systems.

Vibration isolation and control is one of the most

important areas of engineering research, which aims to

prevent the transmission of unwanted vibrations of a

basic structure to neighboring systems or to eliminate

or reduce excessive vibration in the main system in

order to avoid possible damage. Elimination, reduc-

tion or isolation of oscillations is the main problem of

various industrial and technical practices. The use of a

device to reduce the resonant vibrations firstly has

been patented by Frahm [1], and later have been

presented in more formalized and detailed form by

Ormondroyd [2], Den Hartog [2, 3] and Brock [4].

Such vibration absorber represents a dashpot consist-

ing of a mass connected with the main system by

spring with viscous damping. Through the proper

tuning of the absorber (stiffness of the spring and

damping coefficient), it is possible to minimize the

frequency response in the vicinity of the target

resonant frequency. Such a device is addressed in

J. Awrejcewicz (&)

Lodz University of Technology, 1/15 Stefanowski Str.,

90-924 Lodz, Poland

e-mail: jan.awrejcewicz@p.lodz.pl

A. Cheaib � N. Losyeva � V. Puzyrov
Vasyl Stus Donetsk National University, 600-richia 21,

Vinnitsia, Ukraine

e-mail: akram_cheaib@hotmail.com

N. Losyeva

e-mail: natalie.loseva@gmail.com

V. Puzyrov

e-mail: v.puzyryov@donnu.edu.ua

123

Nonlinear Dyn (2020) 101:85–106

https://doi.org/10.1007/s11071-020-05710-7(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0003-0387-921X
http://orcid.org/0000-0002-2194-134X
http://orcid.org/0000-0001-6770-182X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-020-05710-7&amp;domain=pdf
https://doi.org/10.1007/s11071-020-05710-7


the literature as dynamic vibration absorber (DVA or

LDVA) or tuned mass damper (TMD).

As many researchers have noted later on, linear

vibration absorbers are effective only in a very narrow

band of excitation frequencies, in other words, their

frequency robustness is low. To overcome this obsta-

cle and increase the frequency bandwidth, different

nonlinear spring characteristics have been introduced.

Roberson [5] proposes a dynamic vibration absorber

with a weakly nonlinear spring characteristic, i.e., a

linear spring with small cubic nonlinearity. It was

shown that this nonlinear absorber reduces the vibra-

tions over a larger frequency bandwidth compared to

its linear counterpart.

More recently, absorbers with a strongly nonlinear

spring characteristic (a spring with cubic nonlinearity)

have been investigated. In the work of Gendelman [6],

the redistribution of the energy of free oscillations of a

system with two degrees of freedom consisting of a

coupled linear and nonlinear oscillator was investi-

gated. Vakakis and Gendelman showed [7] that energy

transfer between weakly coupled linear and nonlinear

oscillators is due to transient resonance capture on a

resonant 1:1 manifold. Zhu et al. [8] have studied

stability and bifurcations in 2-DOF vibration system

with nonlinear damping and nonlinear spring. Gen-

delman and Staroswetsky [9] have demonstrated that

the quasi-periodic response regimes are very typical

for a periodically forced linear oscillator with the

nonlinear energy sink (NES) attached. Jing and Lang

theoretically studied [10] the cubic nonlinear damping

in the frequency domain through a dimensionless

vibration system model actuated by a harmonic input.

A qualitative tuning methodology, which imposes the

frequency-energy dependence of the absorber to be

identical to that of the nonlinear primary system, was

developed by Vigui�e and Kerschen [11] to mitigate the

impulsive response of an SDOF nonlinear oscillator.

Petit et al. [12] have focused on the analysis of energy

thresholds in 2-DOF system, belowwhich (thresholds)

no efficient vibration reduction is possible. The

authors proposed a reformulation of the dynamics of

the system, leading to the introduction of a new

parameter threshold, and their analysis pointed out the

regions in parameter space where efficient vibration

reduction can be obtained. A novel NES for energy

harvesting has been developed by Kremer and Liu

[13]. Its spring possesses a strong nonlinear stiffness

with a minimum linear component and low

mechanical damping. It has been shown that the

system is capable of energy localization as well as

broadband vibration absorption and energy harvest-

ing. The article of Yang et al. [14] provided an

assessment of the dynamic characteristics of a non-

linear absorber attached to a nonlinear primary

oscillator from the point of view of the oscillatory

power flow. The power factor and kinetic energy of the

nonlinear oscillator were used as performance indices.

Various combinations of cubic nonlinearities of

damping and stiffness in an oscillator and an absorber

were investigated.

In the work of Casalotti and Lacarbonara [15] the

method of multiple scales was adopted to investigate

the 1:1 internal resonance arising in a two-DOF

system composed of a nonlinear oscillator coupled

with a nonlinear DVA exhibiting hysteresis. Taleshi

et al. [16] investigated the targeted energy transfer

from a harmonic-excited nonlinear plate to nonlinear

and linear attachments with comparison those both.

Cirillo et al. [17] have applied singularity theory for

nonlinear resonance of a two-degree-of-freedom

mechanical system.

Over the past fifteen years, the works of various

authors have been devoted to a topic related to the

dynamics of a 2-DOF system with nonlinear coupling

[18–32]. In papers [33–36], the emphasis was put on

optimizing the absorber design as well as design the

DVA with special properties [37–39]. Mostly the

authors used a combination of an analytical approach

and numerical methods. Commonly used analytical

methods are: multiple scale method [21, 23], averaging

of themotion equations [8, 9, 14, 37] harmonic balance

method [28, 40], and some combined techniques [41].

Interesting results with experimental study/validation

were obtained in papers [24, 31, 42–44].

In the present paper, we investigate the dynamics of

a 2-DOF system with a nonlinear elastic characteristic

and uncertain parameters. The emphasis is placed on

the development of an analytical procedure for

determining the parameters of the absorber, contribut-

ing to the maximum decrease in the amplitude of

oscillations of the main system. Numerical calcula-

tions are used to verify the results obtained.

The article is structured as follows. In Sect. 2 the

equations of motion of a mechanical system are given,

which are then reduced to a form suitable for analysis.

The method of averaging [45] is applied to simplify

the mathematical model and stationary points are
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found. In Sect. 3, we analyze the stability of equilibria

of averaged equations, which correspond to the

periodic motions of the mechanical system under

study. The necessary and sufficient conditions for

asymptotic stability are obtained on the basis of

analysis of the linearized system. The joint effect of

the damping coefficient and the nonlinear component

of the stiffness of DVA onto appearance of the flutter

instability is investigated. Section 4 is devoted to

studying the influence of the NDVA parameters on the

magnitude of the oscillations of the primary mass in

the vicinity of resonant frequencies. An analytical

approach is proposed for localizing the values of these

parameters (tuning the absorber). Section 5 conducts

numerical experiments to verify the results obtained.

The results of integration of averaged equations and

complete equations of motion are compared. Finally,

some concluding remarks are provided.

2 Description of the model

The schematic view of a harmonically excited linear

oscillator (primary system or LO) coupled with a

nonlinear absorber (secondary system or NDVA) is

presented in Fig. 1.

The equations of motion of this mechanical system

are

m1 €x1 þ cað _x1 � _xaÞ þ k1x1 þ klina ðx1 � xaÞ
� knonlina ðx1 � xaÞ3 ¼ F0 cosxt;

ma €xa þ cað _xa � _x1Þ þ klina ðxa � x1Þ
� knonlina ðxa � x1Þ3 ¼ 0

ð1Þ

where x1ðtÞ and xaðtÞ are the displacements of the

harmonically forced primary system and of the

damped absorber with a stiffness whose linear and

nonlinear coefficients of rigidity are denoted by klina
and knonlina ; respectively. After adding the second

equation of (2) to the first one and introducing the new

variable x2 ¼ xa � x1 the motion equations may be

rewritten in simplified form

ðm1 þ maÞ€x1 þ ma €x2 þ k1x1 ¼ F0 cosxt;

ma €x1 þ ma €x2 þ ca _x2 þ klina x2 � knonlina x32 ¼ 0:
ð2Þ

The subject of our study is the case when natural

frequency of the primary mass x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

k1=m1

p

is close

to the frequency of the external excitation x: Taking
into account that mass of the absorber is usually much

smaller than main mass, i.e., the ratio ma=m1 may be

assumed as small parameter; therefore the ratio ~x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1=ðm1 þ maÞ
p

is also close tox. We believe that use

of the ~x1 instead of x1 is accountable, because the

natural frequencies of 2-DOF system are changed

slightly, and the magnitude x ¼ x1 is not the ‘‘pure’’

resonant frequency.

Let us introduce the dimensionless parameters and

time by formulas

x1 ¼
ffiffiffiffiffiffi

k1
m1

r

; ~x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k1
m1 þ ma

r

; xa ¼

ffiffiffiffiffiffiffi

klina
ma

s

;

l ¼
ffiffiffiffiffiffi

ma

m1

r

; q ¼ x
x1

� �2

;

e ¼ q� 1

1þ l2
; c ¼ x2

a

x2
1

� 1

1þ l2
; h ¼ cax1

l2k1
;

e, ¼ knonlina m2
1F

2
0

k1m2
a

; s ¼ xt:

ð3Þ

With the aim to reduce the number of parameters, we

introduce also the relative displacements by formulas

x1 ¼ F0ex1; x2 ¼ lF0ex2; ð4Þ

and now the motion equations are in the following

form

Mex00 þ Dex0 þ Kex ¼ Uðs; ex2Þ: ð5Þ

Here

Fig. 1 Mechanical system: nonlinear absorber attached to

linear SDOF primary system
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M ¼ q
1þ l2 l

l 1

� �

; ex ¼
ex1

ex2

� �

; D ¼ diagð0; h ffiffiffi

q
p Þ;

K ¼ diagð1; 1

1þ l2
þ cÞ; U ¼

coss

e,x32

� �

;

ð6Þ

where the prime means the derivative on time s. For
convenience, the symbol ‘‘s ’’ over x1; x2 is subse-

quently discarded.

With the transformation

xj ¼ uj cos sþ vj sin s; x0j ¼ �uj sin s

þ vj cos s ðj ¼ 1; 2Þ
ð7Þ

the following shape of the motion equations (5)

appears

cos s½Mv0 þ ð�M þ KÞuþ Dv�
� sin s½Mu0 þ Duþ ðM � KÞv� ¼ U;

cos sðu0 þ vÞ þ sin sðv0 � uÞ ¼ � sin suþ cos sv:

ð8Þ

Further, taking the linear combinations � sin s �
ð8:1Þ þ cos sM � ð8:2Þ and cos s � ð8:1Þ þ sin sM �
ð8:2Þ; we have the following equations

Mu0 þ 1

2
½ð1� c2ÞDþ s2ðM � KÞ�u

þ 1

2
½�s2Dþ ð1� c2ÞðM � KÞ�v ¼ U1;

Mv0 þ 1

2
½�s2Dþ ð1þ c2ÞðK �MÞ�u

þ 1

2
½ð1þ c2ÞDþ s2ÞðK �MÞ�v ¼ U2;

ð9Þ

where the right-hand side expressions are defined by

formulas

U1 ¼ � 1

8
colð4s2; e,½ð2s2 þ s4Þu32 þ 3ð1� c4Þu22v2

þ 3ð2s2 � s4Þu2v22 þ ð3� 4c2 þ c4Þv32�Þ;

U2 ¼
1

8
colð4ð1þ c2Þ; e,½ð3þ 4c2 þ c4Þu32

þ 3ð2s2 þ s4Þu22v2 þ 3ð1� c4Þu2v22
þ ð2s2 � s4Þv32�Þ; s2 ¼ sin 2s;

c2 ¼ cos 2s; s4 ¼ sin 4s; c4 ¼ cos 4s:

ð10Þ

Equation (9) are more cumbersome compared to the

original Eq. (1), but they have the advantage that the

variables u; v change muchmore slowly over time s, in
contradistinction to ‘‘fast’’ variables x; x0. Accord-

ingly, with numerical integration, the calculation fault

due to the accumulation of error (which may result in

stuck overflow) is more likely for system (1), and

dealing with the system (9) is more secure (an

illustrative example is presented below).

Figure 2a refers to time history for x1 component of

system (5) (l ¼ 0:236, h ¼ 0:256; c ¼ �0:04;

e ¼ �0:15; , ¼ 0:08Þ. As one can see, it may appear

the avalanche-like increasing of amplitude (leads to

overflow). Figure b, c are related to time histories for

u1; v1 components for system (9) (with the same values

of parameters and corresponding initial values)

exhibiting a normal behavior. Though the discussed

issue for numerical integration of system (5) does not

often happen, but the system (9) is more robust in this

respect.

Let us assume that u; v are the slow functions about

the time s. Applying the method of averaging [45], we

get the simplified version of the system (9)

Mu0 þ 1

2
½Duþ ðM � KÞv� ¼ � 3

8
e,

0

v2ðu22 þ v22Þ

� �

;

Mv0 þ 1

2
½ðK �MÞuþ Dv� ¼ 3

8

4

e,u2ðu22 þ v22Þ

� �

;

ð11Þ

which do not contain the time-dependent terms, as all

of them have zero average value over 2p time period.

Now we shall find the stationary points of the

system (11) which correspond to periodic motions

with respect to displacements x1; x2.
1

For the sake of simplicity it is appropriate to

introduce the complex variables z ¼ uþ iv. Then

Eq. (11) takes the following form

Mz0 þ 1

2
ðBþ iDÞz ¼ 1

2
i

1

,z22�z2

� �

;

Mz0 þ 1

2
ðBþ iDÞz ¼ 1

2
i

�1

,z2�z22

� �

:

ð12Þ

Here the following notions are introduced

1 In fact, quasi-periodic motions due to averaging procedure.
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K �M,B ¼
b11 b12

b12 b22

� �

; b11 ¼ �eð1þ l2Þ;

b12 ¼ �lq; b22 ¼ c� e; , ¼ 3

4
e,:

ð13Þ

Thus, with condition z0 ¼ 0, we have the following

system of nonlinear algebraic equations

b11z1 þ b12z2 ¼ 1; b12z1 þ ðb22 � ihÞz2 ¼ ,z22�z2;

ð14Þ

and their conjugate counterparts for �z1; �z2.
Depending on the value of b11, we have two cases.

(A) b11 ¼ 0. According to formulas (13) this case

may happen only when e ¼ 0; which corre-

sponds to ‘‘pure’’ resonant case for system with

‘‘frozen’’ absorber, i.e., x ¼ x0: Then, taking

into account that b12 ¼ �l=ð1þ l2Þ 6¼ 0;

immediately from Eq. (14) we get

z20 ¼
1

b12
; z10 ¼

1

b212
ð�b22 þ ihþ ,

b212
Þ:

ð15Þ

Thus, the system (13) has the unique constant

solution (15).

(B) b11 6¼ 0 ðe 6¼ 0Þ. Let us express z1 from the first

equation of (14) and substitute it into the second

one. It follows from equations

b12 þ ðDB � ihb11Þz2 ¼ b11,z
2
2�z2;

b12 þ ðDB þ ihb11Þ�z2 ¼ b11,z2�z
2
2; DB ¼ detB:

ð16Þ

Subtracting the second Eq. (16) from the first one, we

write down the auxiliary equality

ðDB � b11,z20�z20Þðz20 � �z20Þ
� ihb11ðz20 þ �z20Þ ¼ 0:

ð17Þ

Also we subtract the second Eq. (16) with multiplier

z20 from the first equation multiplied by �z20. As a

result, we have another auxiliary equality

b12ðz20 � �z20Þ þ 2ihb11z20�z20 ¼ 0: ð18Þ

Coming back from complex variables to real ones we

get the corresponding system

½DB � b11,ðu220 þ v220Þ�v20 � hb11u20 ¼ 0;

b12v20 þ hb11ðu220 þ v220Þ ¼ 0;
ð19Þ

which is equivalent2 to the system (14). Expressing the

sum u220 þ v220 from the second equation and substi-

tuting it in the first one we can express the variable u20
in terms of v20:

u20 ¼
1

h2b11
v20ðhDB þ b12,v20Þ; ð20Þ

which leads to cubic equation

P1ðv20Þ ¼ b211,
2v320 þ 2b11h,DBv

2
20

þ h2v20ðh2b211 þ D2
BÞ þ h3b211 ¼ 0:

ð21Þ

The number of the real roots of this equation is

determined by the sign of discriminant of the polyno-

mial P1ðvÞ. Namely, the last has three different real

roots if the expression

Fig. 2 Comparing the numerical integration for systems (5) and (9)

2 With the reservation that z20 6¼ 0. As b12 6¼ 0, it is obvious,

that otherwise the equalities (14) are not valid.
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DP1
¼ �b11½27b11b412,2 � 4DBðD2

B þ 9h2b211Þb212,
þ 4h2b11ðh2 þ 2D2

BÞ
2�

ð22Þ

is positive, and it has one real root if DP1
is negative.

The expression (22) can be considered as polynomial

of second order with respect to parameter ,; hence, the
necessary and sufficient condition for DP1

to be

positive is the following double inequality

,1\,\,2; ,j

¼ 2

27

DBðD2
B þ 9h2b211Þ þ ð�1Þjsgnðb11Þd3=21

b11b
2
12

; ðj ¼ 1; 2Þ:

ð23Þ

Here d1 ¼ D2
B � 3h2b211; and the value of b11 may be

positive or negative, so the multiplier sgnðb11Þ guar-
antees that expression in left-hand side is smaller than

the expression in right-hand side. It is easy to notice

that ,1; ,2 are positive if and only if b11DB [ 0 and are

negative when b11DB\0.

In the present case study the magnitude of e is small

(say, jej � 0:2), and taking into account formulas (16),

(23) one can see that

minfj,1j;j,2jg¼
2

27

jDBjðD2
Bþ9h2b211Þ�d3=21

jb11jb212

¼ 2

27

D2
BðD2

Bþ9h2b211Þ
2�d31

jb11jb212½jDBjðD2
Bþ9h2b211Þþd3=21 �

¼ 2h2D2
B

jDBjðD2
Bþ9h2b211Þþd3=21

jb11jþOðb311Þ!e!0 0:

ð24Þ

Thus, the hypersurfaces , ¼ minfj,1j; j,2jg are

located close to the hyperplane e ¼ 0 in parameter

space fl; e; c; h; ,g. The typical view of the 3D-

projections of the hypersurfaces , ¼ ,1; , ¼ ,2 is

presented in Fig. 3.

3 Stability and bifurcation analysis

3.1 Asymptotic stability conditions

In this section we derive the stability conditions for

fixed points of system (12) in analytical form. In the

literature, the authors usually underline the need of

analysis of the eigenvalue problem for a characteristic

matrix and the analysis itself is performed numerically

[8, 14, 19, 25, 37]. However, in the case of a multi-

parameter problem, dealing with explicit analytical

Fig. 3 Surfaces , ¼ ,1; , ¼ ,2; l ¼ 0:1. (For c ¼ �0:01 and varying h2 in a, b and for h2 ¼ 0:01 and varying c in c, d presents the

intersection of surfaces in a with plane h2 ¼ 10�4)
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conditions seems to be important, since a purely

numerical analysis may be incomplete.

Consideration of the system (11) and introducing

small perturbations according to formulas

uj ¼ uj0 þ euj; vj ¼ vj0 þ evj ðj ¼ 1; 2Þ ð25Þ

yields the following equations

Meu0 þ 1

2
ðDeu � BevÞ � B1

eu

ev

� �

þ � � � ¼ 0;

Mev0 þ 1

2
½Beu þ Dev� � B2

eu

ev

� �

þ � � � ¼ 0;

B1 ¼
oW1

ou

oW1

ov

� �

jðu0;v0Þ

¼ � 3

8
e,

0 0 0 0

0 2u20v20 0 u220 þ 3v220

� �

;

B2 ¼
oW2

ou

oW2

ov

� �

jðu0;v0Þ

¼ 3

8
e,

0 0 0 0

0 3u220 þ v220 0 2u20v20

� �

;

ð26Þ

and three dots means the nonlinear terms.

The k- matrix corresponding to the linear part of the

system (26) is written as

1

2

2kð1þ l2Þ 2lk b11 b12

2lk 2kþ hþ 2,u20v20 b12 b22 þ ,ðu220 þ 3v220Þ
�b11 �b12 2kð1þ l2Þ 2lk

�b12 �b22 � ,ð3u220 þ v220Þ 2lk 2kþ h� 2,u20v20

0

B

B

B

@

1

C

C

C

A

:

ð27Þ

Accordingly, the characteristic polynomial has the

following form

PcharðkÞ ¼ a4k
4 þ a3k

3 þ a2k
2 þ a1kþ a0;

a4 ¼ 16; a3 ¼ 16hð1þ l2Þ; a2 ¼ 4fh2ð1þ l2Þ2

þ b211 þ 2b212ð1þ 2l2Þ þ b222ð1þ l2Þ2

� 2lb11ð2b12 � lb22Þ � 4lb12b22ð1þ l2Þ
þ 4r½l2b11 � 2lb12ð1þ l2Þ
þ b22ð1þ l2Þ2� þ 3r2ð1þ l2Þ2g;

a1 ¼ 4h½ðc11 � lc12Þ2 þ c212�; a0 ¼ d2 þ h2c211

� 2c11drþ 3

4
c211r

2;

ð28Þ

where r ¼ ,ðu220 þ v220Þ; , ¼ 4
3
e,:

Note that, unlike the matrix (27), coefficients ajðj ¼
0; 4Þ do not include values u20; v20 separately, but

only the combination u220 þ v220. Therefore, it makes

sense to get the equation directly for r instead of the

determining Eq. (21) for v2: This can be done by

excluding the variable v2 from the system

P0ðv2Þ ¼ 0; P1ðv2Þ ¼ ,ðu22ðv2Þ þ v22Þ � r ¼ 0;

ð29Þ

which leads to the condition

res1ðP0ðv2Þ;P1ðv2ÞÞ ¼ 0: ð30Þ

The notion resð�1; �2Þ here and below means the

resultant of the polynomials �1; �2.
Since the polynomials P0; P1 are, respectively,

third and fourth degree in v2; then res1 is a seventh-

order determinant. However, the required condition is

quite simple

P2ðrÞ ¼ �r3b211 þ 2r2b11b
2
12DB

� b412ðh2b211 þ D2
BÞ þ ,b612 ¼ 0:

ð31Þ

Here DB ¼ b11b22 � b212; and the multiplier ,8=b211 is

neglected (b11 6¼ 0).

The necessary and sufficient conditions for the fact

that all roots of the polynomial PcharðkÞ lie in the left

half-plane can be obtained by Lienard–Chipart crite-

rion [46]. For a fourth-degree equation (with a4 [ 0),

these conditions are

a3 [ 0; a2 [ 0; a0 [ 0; D3 ¼
a3 a1 0

a4 a2 a0

0 a3 a1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

[ 0:

ð32Þ

As can be seen from the formulas (28), the condition

a3 [ 0 is satisfied, and it is easy to verify that for

a0 [ 0; D3 [ 0 and (considering that a1 [ 0) we have

a1a2a3 [ a0a
2
3 þ a4a

2
1 [ 0; that is, the condition

a2 [ 0 is also satisfied. Thus, the inequalities

a0 [ 0;D3 [ 0 are necessary and sufficient conditions

for the exponential stability of the zero solution of the

system (26).

In case A the coefficient a0 is obviously positive,

and expression for D30 takes the view

ð1þ l2Þ4fl4h2 þ ½3ð1þ l2Þ2,
þ l2ðc� c0Þ�½ð1þ l2Þ2,þ l2ðc� c0Þ�g:

ð33Þ
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Here the notion c0 ¼ � 2l2

ð1þl2Þ2 is used.
For given value of l the equation D30 ¼ 0 describes

the second-order surface in parameter space ðh2; ,; cÞ.
The Hessian matrix for (33) is indefinite; therefore this

surface stands for hyperbolic paraboloid (Fig. 4a). The

stability condition may be broken only if

l2

ð1þ l2Þ2
min

1

3
ðc0 � cÞ; c0 � c

� �

\,\
l2

ð1þ l2Þ2
max

1

3
ðc0 � cÞ; c0 � c

� �

ð34Þ

In the plane Oc, these inequalities correspond to

the sets inside acute angles between straight lines

, ¼ � l2

ð1þ l2Þ2
ðc� c0Þ; , ¼ � l2

3ð1þ l2Þ2
ðc� c0Þ;

ð35Þ

presented in Fig. 4b.

Note, that even in case when the inequalities (34)

are valid, the region of instability is very small. As the

magnitude of c is limited, the threshold level for h2 is

achieved at

, ¼ � 2l2

3ð1þ l2Þ2
ðc� c0Þ; hmin ¼

1
ffiffiffi

3
p jc� c0j:

ð36Þ

In other words, if the friction coefficient is not too

small (h[ hmin), the motion under study is asymptot-

ically stable.

In case B, since r is an implicit function of the five

specified parameters, a ‘‘direct’’ analysis of the

conditions of stability seems difficult to implement.

At the same time conditions

P2ðrÞ ¼ 0; a0ðrÞ ¼ 0 ð37Þ

and

P2ðrÞ ¼ 0;D3ðrÞ ¼ 0 ð38Þ

we define the Hopf bifurcation surfaces in the region

Dparðh; c; ,; e; lÞ: the passage through the hypersur-

face a0 ¼ 0 ðD3 [ 0Þ determines the divergent loss

of stability, and through the hypersurface D3 ¼
0 ða0 [ 0Þ determines the flutter loss of stability.

The equation of the hypersurface a0 ¼ 0 has a fairly

simple form

27b211b
4
12,

2 � 4b11b
2
12DB,ð9b211h2 � 31D2

BÞ
þ 4ðb211h2 þ 16D2

BÞðb211h2 þ D2
BÞ

2 ¼ 0:
ð39Þ

Accordingly, the condition

2

27b11b
2
12

½DBð9h2b211 � 31D2
BÞ þ q1�

\,\
2

27b11b
2
12

½DBð9h2b211 � 31D2
BÞ þ q1�;

q1 ¼ ð3h2b211 þ 23D2
BÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
B � 3h2b211

q

ð40Þ

is a sufficient condition for the instability of the zero

solution of the system (26).

Note that after performing the replacement

Fig. 4 Case A: a the Hopf bifurcation surface (l ¼ 0:1); b necessary conditions of instability
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h ¼ �h
DB

b11
; , ¼ �,

D3
B

b11b
2
12

; ð41Þ

we obtain the equation of a plane curve of the third

order

27�,2 þ 4ð31� 9�hÞ�,þ 4ð�h3 þ 18�h2 þ 33�hþ 16Þ ¼ 0

ð42Þ

The graph of this curve is shown in Fig. 5.

The equation of the hypersurface D3 ¼ 0 may be

given in the following form

P3ð,; h; c; e; lÞ,27b412,
2ð1þ l2Þ6 � 4b212,ð1þ l2Þ3P31

þ P30ðh2; c; e; lÞ ¼ 0;

ð43Þ

where expressions for polynomials P31;P30 are

P31 ¼ 3h2b11DBð1þ l2Þ3 � 4b212ð1þ l2Þ3

½b11 � 2lb12 þ b22ð1þ l2Þ�f31b211b222
þ b11b22ð1þ l2Þ½29b211 � 58lb11b12

� 33b212ð1þ l2Þ� þ 7b411 � 28lb113b12

� b211b
2
12ð15� 13l2Þ

þ 30lb11b
3
12ð1þ l2Þ þ 9b412ð1þ l2Þ2g;

ð44Þ

P30 ¼ fh2ð1þ l2Þ2 þ ½b11 � 2lb12

þ b22ð1þ l2Þ�2g½4h4b411ð1þ l2Þ4

þ h2g1 þ g22g
2
3�;

g1 ¼
4

17
b211ð1þ l2Þ2f½7b211 þ ð17b11b22

� 10b212Þð1þ l2Þ � 14lb11b12�2

þ 2½b211 � 2lb11b12 þ b212ð1þ l2Þ�2g;
g2 ¼ b211 � 2lb11b12 þ ð4b11b22 � 3b212Þð1þ l2Þ;

g3 ¼ b211 � 2lb11b12 þ ð2b11b22 � b212Þð1þ l2Þ:
ð45Þ

Taking into account that P30 [ 0 in theDpar; and, from

other side, since the expression for D3 is positive if

, ¼ 0 (subsequently, r ¼ 0), we conclude that D3 is

negative if and only if

2

27b212ð1þ l2Þ3
ðP31 �

ffiffiffiffiffiffiffiffi

Pdis

p
Þ

\,\
2

27b212ð1þ l2Þ3
ðP31 þ

ffiffiffiffiffiffiffiffi

Pdis

p
Þ:

ð46Þ

Here

Pdis ¼ �4b412ð1þ l2Þ6f3h2ð1þ l2Þ2

� ½b11 � 2lb12 þ b22ð1þ l2Þ�2gg24;

g4 ¼ 6h2b211ð1þ l2Þ2 þ 1

46
½25b211

þ 46b11b22ð1þ l2Þ � 50lb11b12

� 21b212ð1þ l2Þ�2 � 27½b211
� 2lb11b12 þ b212ð1þ l2Þ�2:

ð47Þ

Thus, the hypersurface D3 ¼ 0 has more complicated

shape comparatively with previous one. Its 3D

projection for fixed parameters l ¼ 0:1; c ¼ 0:02 is

presented in Fig. 6b.

3.2 Bifurcation points for averaged equations

Note that polynomial (31) can be used to determine

bifurcation points, since it can be considered as the

resulting function g of the Lyapunov–Schmidt reduc-

tion [47] for system (11) with the variable q ¼ jz2j2
and the bifurcation parameter e:

gðq; e; l; h; c; ,Þ ¼ �,2b211q
3 þ 2,b11DBq

2

� qðD2
B þ h2b211Þ

þ b212 ð, 6¼ 0; b11 6¼ 0Þ:
ð48Þ

The condition for the singularity is the equality

og=oq ¼ 0. The following cases are possible:

Fig. 5 The curve of third order (42)
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(A) o2g
oq2 ¼ 0 ðhysteresisÞ.3 Then the following equal-
ities hold

h ¼ hhyst,
DB
ffiffiffi

3
p

b11
; , ¼ ,hyst,

8D3
B

27b11b12
;

q ¼ 2DB

3,b11
:

ð49Þ

Suppose that the mechanical parameters of the

main system and the absorber (excluding the

nonlinear stiffness) are specified. At the same

time the exact values of the frequency and

amplitude of the external influence are uncer-

tain; however the intervals of their possible

values are known, i.e., x 2 ½xð1Þ;xð2Þ�;
F0 2 ½F1;F2�. Since it is usually desirable to

avoid the appearance of bifurcations for the

normal operation of the system, it is possible to

determine the interval of ‘‘safe values’’ for

knonlina ; in which the formulas (49) cannot be

fulfilled. We illustrate this with an example. Let

the system parameters be determined according

to Table 1.

The proposed procedure is easy to explain using

a geometric representation. Figure 7a shows the

curves C1 : f1 ¼ hhystðeÞ; C2 : f2 ¼ 50,hystðeÞ.
For given value of h0 ¼ 0:15 (Fig. 7b) we

determine the values of e : e1 � �0:103;

e2 � 0:147—the points of intersection the line

f ¼ h0 and curve C1. After that we find the

values f2ðe1Þ; f2ðe2Þ: With this we have deter-

mined the interval of safe values for 50, as

ð� 0:088; 0:083Þ. Since, according to formulas

(3), , depends on F0, then we obtain

the corresponding interval for knonlina �
ð� 0:258; 0:027Þ. These results correlate with

ones of paper [17] which are presented in Fig. 2.

(They are not completely identical, because in

[17] the primary system has nonlinear stiffness

component.)

(B) o2g
oq2 6¼ 0; og

oe ¼ 0. The possibility of other types of

bifurcation can be analyzed in same manner.

Although the explicit formulas for e; q cannot be
obtained, the numerical analysis is simple

enough. In particular, for the values from table 1,

there are two points of simple bifurcation

(e � � 0:055;, � � 0:00100; q � 183:17 and

e � 0:060; , � � 0:00095; q � 203:90).

4 Analytical estimation of the responses and tuning

the NDVA

The magnitude of the responses of the main mass is

determined by function
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u21ðsÞ þ v21ðsÞ
p

: If the sta-

tionary point M0ðu0; v0Þ is an attractor, then after the

first phase of the motion (restructuring of trajectory

after receiving the initial perturbation), this function

tends to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u210 þ v210
p

: In mathematical formulation,

this aspiration occurs as t ! 1. In fact, after a certain

period of time I1 ¼ ½0; s1� the phase trajectory falls

into some sufficiently small neighborhood of the point

Fig. 6 Bifurcation surfaces a0 ¼ 0;D3 ¼ 0 for system (11)

3 Conditions of non-degeneracy og=oe 6¼ 0; o3g=oq3 6¼ 0 are

fulfilled here.
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M0. Therefore, the problem of mitigation the oscilla-

tions of the main system can be formulated as a

problem of minimizing the magnitude of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u210 þ v210
p

with the additional condition that the value of s1 is not
too large. For technical reasons, it is more convenient

to choose

nðh; c; ,; l; eÞ,u210 þ v210 ð50Þ

as the target function. Values of u10; v10 are yielded by

the system (14) through u20; v20, and u20 is estimated

by v20 according to the formula (20). Finally, v20 is the

root of the cubic equation (21). The roots of this

equation can be written down explicitly using the

Cardano formula. However, this solution contains the

roots of the second and third degrees and depends on

the five parameters l; e; h; c; ,: Therefore, it is com-

pletely unsuitable for further analysis. For this reason,

we suggest the following procedure.

With fixed values of the parameters h ¼ h�; c ¼
c�; , ¼ ,�; l ¼ l�; e ¼ e�; the value of v20 is

defined as a root of the polynomial P1 and, being

substituted [taking into account the formulas (20),

(14)] into (50), gives the corresponding value n�: Since

n can be considered as a polynomial P4 with regard to

v2 and with coefficients depending on the parameters

P4ðv2Þ ¼ b412,
2v42 þ 2h,b312ðb11v32b22 � b212Þ

þ h2b212v
2
2½h2b211 � 2,b211

þ ðb11b22 � b212Þ
2�

� 2h3b11b12v2ðb11b22 � b212Þ þ h4b411;

ð51Þ

then n� satisfies the system P1ðv2Þ ¼ 0; P4ðv2Þ ¼ 0,

that is, is the root of the following polynomial

P5ðnÞ,resðP1;P4; v2Þ
¼ �,2b211n

3 þ ,b311b
2
12n

2½3,b11 þ 4h2b211

þ 2b212ðb11b22 � b212Þ�
� nf3,2b211b412 þ 2b11b

4
12ð4h2b211 þ 3b412Þ

þ b412½4h4b411 þ h2b211ð4b211b222 � 8b11b
2
12b22

þ 5b412Þ þ b412ðb11b22 � b212Þ
2�g

þ b612½,2 þ 2,ð2h2b11 � b212b22Þ
þ 4h4b211 þ h2ð4b211b222 þ b412Þ þ b412b

2
22�:

ð52Þ

Table 1 Values of

mechanical and

dimensionless parameters

Primary system Absorber Dimensionless

Mass 1 0.0196 l ¼ 0:14

Linear stiffness 1 0.0188 c ¼ �0:02

Linear damping 0 0.00294 h ¼ 0:15

Nonlinear stiffness 0 knonlina
,

Frequency of external force x 2 ½0:825; 1:132� e 2 ½� 0:3; 0:3�
Amplitude of external force F0 2 ½0:01; 0:03� knonlina ¼ 0:0147,=F2

0

Fig. 7 Geometrical interpretation of conditions (49)
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After substitution of expressions for b11; b12; b22
[formulas (13)] the resulting formula is rather cum-

bersome to be given here.

Since, by assumption, the ratio X0 ¼ x= ~x1 is close

to 1, we can assume that e � 1; and the specific

magnitudes of m1; k1; as well as the ranges of varying

of x;F0; are known when setting the task for a given

mechanical system (1). It is also obvious that the

efficiency of the absorber is the higher, the greater its

mass. At the same time, due to constructive consid-

erations, there is usually a top limit on the value ma,

that is, we can assume that the value of the parameter l
is known (for a particular system). Thus, the task is to

find such parameters c; h; , (tuning of the absorber), at

which the maximum on e of the function (46) takes the
smallest value.

In principle, this problem can be solved numerically,

but such a solution can have serious errors, since the

limits of variation of various parameters differ signif-

icantly. As will be shown below, there is a ‘‘very small’’

order parameter (10�5), small order (10�1�10�2)

parameters and a large order (103�104) parameter.

Therefore, to find the optimal configuration of the

absorber, we propose the following combined numer-

ical-analytical approach. For a given value of l as a

first approximation for h; c we take the same values as

in the case of a linear absorber, using known formulas

([3, 48] or the like). For instance, according to [3] we

have the following formulas

xa ¼
x1

ð1þ l2Þ ;
ca

max1

¼
ffiffiffi

3

2

r

l

ð1þ l2Þ3=2
; ð53Þ

which imply the following estimations:

cDH � �0:01; hDH � 0:12 ðl ¼ 0:1Þ. Constructing

the surface P5ðn; e; ,Þ ¼ 0, we can make a decision

about the appropriate range of the parameter ,.
Figure 8a displays the parameter , range is taken

½� 0:1; 0:1�. It is clear that such range is too large,

because in the middle of the surface there is a notch in

which the values of n are much less than 4000. In

Fig. 8b this range is reduced of a hundred times, and,

obviously, it should be further reduced in order for the

peaks at the edges of the pattern to disappear. In

Fig. 8c there is no strong change in the height of the

upper edge, and a rough estimate of the size can be

made as , 2 ½� 0:00007;� 0:00005�.
Now, taking as a first approximation c ¼ �0:01;

,ð1Þ ¼ �0:6	 10�4, we vary h2 within such limits so

as n not to exceed value � 210� 220. In such a way

we determine the amendment to the taken value:

hh1 ¼ ðhð1ÞÞ2 � 0:015 (Fig. 9a) instead of h20. Substi-

tuting hh1 in (52), we vary c (Fig. 9b). After that, the
values found are refined from the condition of equal

peaks at the lowest possible value of n (Fig. 9c). Thus,
the values found are c ¼ �0:0153; hh ¼ 0:015;

, ¼ �0:52	 10�4.

Verifying the correctness of the result can be easily

performed using the expression (52). If there is a set of

values cH; hH; ,H for which n takes a value less than

that found (for example, n1 ¼ 201:1), then the straight

line n ¼ 201 intersects the curve P5ðn; cH; hH;
,H; l; eÞ ¼ 0 at four points, that is, the polynomial

P5ðn; eÞ jn¼201 has four real roots on the interval

½e1; e2�. If this equation has two roots eð1Þ; eð2Þ for any

Fig. 8 Delimitation of the appropriate range for parameter , ðl ¼ 0:1Þ
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ðcH; hH; ,HÞ from the region Dpar, and eð1Þ � eð2Þ [ 0,

then this means that at a certain frequency of external

excitation xH, such that eH 2 ðeð1Þ; eð2ÞÞ the corre-

sponding value nH exceeds the value n ¼ 201.

Remark 4.1 Of course, if the polynomial

P5ðn; eÞ jn¼201 does not have real roots on the interval

ðeð1Þ; eð2ÞÞ for some set ðcH; hH; ,HÞ, this means that

the straight line n ¼ 201 passes above the peaks, that

is, for these values we have nH\201, and the

parameters found ð� 0:0153; 0:015;� 0:52	 10�4 in

our case) need to be revised.

Remark 4.2 If there are two real roots, but,

eð1Þ � eð2Þ\0, this means that two peaks are involved

in, then a set of parameters ðcH; hH; ,HÞ has been

found for which we have the equality of the peaks.

Such a situation is possible from a mathematical point

of view, although it can be numerically realized only

with some accuracy limit specified in advance.

Summarizing the content of this section, we believe

that methodology suggested allows to reduce the range

for search of the appropriate values for nonlinear

component of stiffness. A possible alternative approach

is to solve the optimization problem by a grid search.

However, in a multidimensional model space, such

approach will be computationally more expensive and

scales as Nd, where d stands for the dimensionality of

the problem. For example, the given problem has four

free parameters to optimize ðd ¼ 4Þ. Given the high

sensitivity of the function to the parameters, the

number of evaluations per grid direction N will be in

the range of at least several tens. Thus, the total

number of function evaluations required to achieve the

desired optimization accuracy using the grid search

can be in the range of hundreds of thousands.

5 Numerical analysis

In this section, the case studies are inspected to check

the performance of the absorber attached to primary

oscillator. The responses of the system obtained from

analytical approximations, which are based on the

averaging method, are compared with numerical

integrations based on a fourth-order Runge–Kutta

method. In order to facilitate the comparison with the

results of Sects. 3 and 4, we use dimensionless

parameters and variables introduced according to the

formulas (3).

5.1 Comparing the behavior of the trajectories

of systems (9) and (11)

First, we compare the results of the numerical

integration of the equations of the motion and the

averaged ones. Namely, we check how well the

information obtained from the analysis of the averaged

equations corresponds to the behavior of the solutions

of the original mechanical system. The values of the

parameters were taken as follows: two values for l
were taken in turn, namely 0.1 and 0.14, parameters

c; h; , are ranging from � 0:2 to 0.2, from 0.05 to 0.5,

and from � 0:001 to 0.001, respectively.4 The

Fig. 9 Refinement of the first approximation

4 As follows from the results of Sect. 3, with parameter values

outside the specified ranges the absorber is ineffective, i.e., the

amplitude of oscillations of the main mass increases

significantly.
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frequency ratio was varying from 0.5 to 1.5, though the

peaks of the responses are situated closer to 1. For

chosen values of parameters c; h; , the distance

between peaks is proportional to l and at first

approximation is close to 2l.
Figures 10 and 11 show projections of typical

phase trajectories on the planes Ou1v1 (the primary

system) and Ou2v2 (the absorber). Figure 10a exhibits

the projections of the phase trajectory of the system (9)

(solid curve) and averaged Eq. (11) (dot curve). The

following initial values are taken: u1ð0Þ ¼ 8;

v1ð0Þ ¼ �3, u2ð0Þ ¼ �2:5; v2ð0Þ ¼ 3; and the time

interval is s 2 ½0; 50�. In Fig. 10b, c, the same

trajectories are shown separately within the time

interval s 2 ½50; 150�. Fig. 11 shows the time histories

of the components u1ðsÞ; v1ðsÞ (Fig. 11a, b), as well as
the behavior of the absorber (Fig. 11c). Two circum-

stances should be noted in this regard. The first is that

the absorber calms down ostensibly faster than the

main mass (compare Figs. 10b and 11c). In fact, this is

not so—we recall that the variable ex2 and, conse-

quently, u2; v2 are taken with a multiplier l [see

formula (4)], so the absorber responses are 10 times

more than those shown in the figure. The second

circumstance concerns the time histories of coordi-

nates uj; vj ðj ¼ 1; 2Þ for the complete system of

Eq. (9) and the averaged curve shown in Fig. 11. As

one can see, the points belonging to the dashed curve

accurately reflect the behavior of the function

v̂1ðsÞ ¼
1

T

Z s

0

v1ðt1Þdt1 ð54Þ

(the same situation holds for u2ðsÞ; v2ðsÞ, although
they are not shown in the Figure). In the case of the

variable u1, we see some discrepancy, i.e., the curve

corresponding to the averaged equations follows the

lower edge of the ‘‘true’’ curve u1ðsÞ. This discrepancy
is explained by the fact that the first equation of the

system (9) contains a term sin 2s that is of order 1, but
it disappears with averaging (observe that for other

equations of the system, this does not occur).

Finally, Fig. 12 shows that the trajectories of the

system are tightened to the attractor. In the case of

averaged equations, this attractor, according to the

results of Sect. 3, is the fixed point (stable focus), and

the trajectories are pulled to this point regardless of the

Fig. 10 The motion of main mass: a time interval s 2 ½0; 50�; b, c s 2 ½50; 150�, the dot line corresponds to averaged equations

(l ¼ 0:1; e ¼ �0:02; c ¼ �0:015; h ¼ 0:14;, ¼ 10�4Þ

Fig. 11 Time histories related to Fig. 10 (a, b); motion of the absorber for s 2 ½0; 100� (c)
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choice of initial values (of course, taking into account

restrictions on the magnitude of initial perturbations).

Three different paths are shown in Fig. 12a, which, as

can be seen in Fig. 12b, after a certain period of time

enters a small neighborhood of a point

M0ðu10; v10; u20; v20Þ. As for Eq. (11), here the limit

cycle is an attractor (Fig. 12c, d), that is, the solutions

from a certain neighborhood of the point M0 are

asymptotically periodic.5 As one can see, the shape of

this limit cycle is close to the cardioide with the

parameter a � 0:5.

Remark 5.1 Here and further, commenting on the

figures, we say ‘‘a limit cycle’’ for brevity. Of course,

we are talking about projections of the limit cycle in

4-dimensional space onto the planesOu1v1 andOu2v2:

It is obvious that the limits of applicability of the

averaging method (in general) and for this problem (in

particular) are bounded. Consider as an illustration the

case when Eq. (22) has three real roots. To find the

appropriate values of the parameters, we can use the

inequalities (23) (or Fig.3). Choosing l ¼ 0:1; c ¼
�0:01; h ¼ 0:01; it follows from the Fig. 3d that we

can take, for example, e ¼ �0:01; , ¼ �2	 10�4.

Substituting the latter values into (31), we have

r1 � �0:02957; r2 � � 0:7709; r3 � � 1:1017.

For a smallest absolute value of sigma, dynamics is

predicted by the used averaging procedure. For the

averaged system (11), the trajectory tends to the limit

point M01ð� 23:12;� 10:44; 10:90; 11:24Þ, whereas

for the full system it is attracted to the limit orbit.

However, a fundamental discrepancy already exists

for the values r2; r3. For the averaged system, the

corresponding stationary point is an attractor

(stable focus). For instance, with r ¼ r2 Eq. (28)

has two pairs of complex conjugate roots

� 0:005
 0:666i; � 0:273	 10�4 
 0:898	 10�2i,

respectively, and the damping rate is very weak

(Fig. 13a). However, the trajectory corresponding to

Eq. (9) behaves differently (Fig. 13b, c). This is

because the amplitude of the oscillations of the main

mass is too large (M02ð� 512:56;� 63:02;

39:89; 4:11Þ), and the amplitude of each individual

pulse is also large (Fig. 13b).

Figure 14 reports in more detail the initial phase of

the perturbed motion. As one can see, from the very

beginning the trajectory corresponding to the averaged

equations does not reflect the behavior of the trajectory

of the system (9) (compare Figs. 11b and 14d).

5.2 Influence of the DVA nonlinear stiffness

component

This subsection describes some of the features inher-

ent in the nonlinear component knonlina , which is an

important part of tuning of the DVA and it has been

presented in our studying through the parameter ,. As
it follows from Sect. 4, in the case of a ‘‘one-sided’’

frequency range (e1e2 [ 0)6 a softening spring should

be taken when X0\1, and a hardening spring in

opposite case. This conclusion is confirmed by

numerical calculations. The magnitude of the param-

eter , is determined according to the procedure

described in Sect. 4 and is influenced by mass ratio

and frequency range.

For low frequencies ratio (e\0), one deals with a

softening spring, and gradual increase in the parameter

, values from zero to a certain limit helps to reduce the

Fig. 12 Attraction of the phase trajectories to the fixed point of

system (11) for different initial perturbations: a time interval

s 2 ½0; 100�, b time interval [100, 130] ; attractors for system (9)

with initial values: ð8;� 2:5;� 3; 3Þ for case (c) and

ð6; 5:5;� 5; 0Þ for case (d)

5 Accordingly, the solutions of the system (2) are asymptoti-

cally quasi-periodic functions of time.

6 This rule is also true when e1e2 [ 0, but the point e ¼ 0 is not

in the middle of the interval, but close to one of the values e1; e2:
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amplitude of the oscillations (Fig. 15a,

,ð1Þ ¼ 0; ,ð6Þ ¼ �0:7 � 10�4). It should be noted

that for curves 5, 6 as compared with 2,3, the

amplitude decreased by 30�35%. At the same time,

the duration of the transition process has doubled and

more. Meanwhile, a further increase in the magnitude

of , leads to a change in the qualitative picture.

Namely, the beats appear (Fig. 15b), and the transition

time to the limiting cycle increases significantly

(another 2–3 times). The further growth in , leads to

instability regime. Although in the left part of the

Fig. 15c the amplitude of oscillations is low, but in the

right part it is higher than the counterpart shown in

Fig. 15a (the curves 5, 6).

The following interesting feature has been detected:

when changing the parameter ,, the shape of the limit

cycle for the main mass almost does not change (or

changes insignificantly with a significant (several

times) increase in the parameter module). At the same

time, the shape of the limit cycle for the absorber has

been greatly modified. Our numerical experiments

have yielded three qualitatively different forms: (A) a

Fig. 13 Dispersal of phase trajectories of the averaged equations (11) (a) and the authentic ones (9) (b, c) for large initial values. The
scaling factor is 1:40

Fig. 14 Discrepancy in behavior of phase trajectories at the beginning of the motion: averaged system (a, c); original system (b, d)

Fig. 15 Influence the magnitude of parameter , onto amplitude of the oscillations [s1 2 ½180; 600� (a), s1 2 ½800; 1400� (b), s1 2
½1600; 1660� (c)]
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‘‘crumpled’’ cardiode; (B) a ‘‘loop’’ (‘‘figure of

eight’’); (C) a ‘‘triangle’’ (Fig. 16).

If the frequency interval is two-sided (e1e2\0),

then it is advisable to use a hardening spring, and the

j,j should be taken 8–10 times smaller in comparison

with the previous case. For this reason, the amplitude

of oscillations, generally speaking, increases, includ-

ing for positive values of e, but this is a kind of

compensation to protect the primary system against

much greater growth of oscillations amplitude with

possible negative values e.
Also, the following important circumstance should

be taking into account. As noted above, one of the key

points of this paper is based the assumption that the

parameters of the main system and the external

excitation are uncertain. That is, when solving the

problem of setting up the device to reduce oscillations

of a particular mechanical system, we can assume that

the quantitiesm1; k1; e1; e2; (andma) are known. At the

same time, unlike c; h, the parameter , depends

significantly on F0. If its magnitude is known accu-

rately enough, then the value of , is easily transformed

into a value for knonlina , as predicted. However, a

situation may appear when the interval ½F1;F2� of a
possible change of F0 (within the framework of one

task) is not narrow; say F2 is of 5–10 times more than

F1. In this case, to determine the value of knonlina one

should take the maximum value for F, that is,

knonlina ¼ 4

3

k1m
2
a

,m2
1F

2
2

: ð55Þ

For this reason a significant decrease in ‘‘hardening

ability’’ of the spring may occur, which leads to some

degradation of the absorber effectiveness. However, if

we take some ‘‘more neutral’’ value, for instance

ðF1 þ F2Þ=2, and F2 ¼ 5F1 then, in case F0 ¼ F2 we

have the quadruple increase in value for j,j, and this

may lead to much more increase in amplitude of the

responses of primary system (see Fig. 15).

5.3 Tuning the DVA and numerical validation

Now we check the recommendations regarding the

choice of absorber’s parameters based on the numer-

ical integration of Eqs. (9) and (11). We consider that

the mass of the absorber and the interval of possible

values of the frequency of external influence are

known: l ¼ 0:14; e 2 ½� 0:15; 0:2�. As can be seen

from Fig. 8, in this case the surface has two ridges, that

is, the amplitude-frequency curve has two peaks.

Performing the appropriate calculation, we obtain

the following values c � �0:022; h2 � 0:028;

, � �0:54	 10�4. The corresponding value of func-

tion n in this case is � 104. Substituting the values of

the parameters and the initial values u1ð0Þ ¼ 7;

v1ð0Þ ¼ �6; u2ð0Þ ¼ �0:5; v2ð0Þ ¼ 1, we build the

phase portrait, and the projections of limit cycles onto

the plane Ou1v1 are shown in Fig. 17a, b. These cases

correspond to two peaks related to the system (11).

The coordinates of the point M0 obtained by solving

the system (14) are ð6:72; 7:46;� 2:56; 6:17Þ for e ¼

Fig. 16 Evolution the shape of the limit cycle for DVA under increasing value of ,
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�0:1 (the left peak) and ð� 4:67; 9:10;� 3:12;� 6:68Þ
for e ¼ 0:11 (the right peak).

Note that a slight change in the selected parameters

does not affect the magnitude of the maximum

responses too much, although it may worsen some of

the secondary characteristics. For example, in

Fig. 17b, the time of the transition period (the time

during which the trajectory reaches a small neighbor-

hood of a stationary point) is � 90 s (on s-scale), and
in Fig. 17c—� 105 s. Recall also that c is a detuning
parameter of the linear component of the stiffness of

the absorber relative to the stiffness of the main mass.

Therefore, a change in klina of 1�2% corresponds to a

change of 50�100% for c, and this component is the

most vulnerable link in terms of tuning accuracy.

Changing the parameter h characterizing the damping,

say 10%, does not matter much (Fig. 17c). The most

‘‘vigorous’’ role plays the nonlinear component of

stiffness. In Fig. 17d–f there are presented limit cycles

for three different values of , : weaker the sample one

(� 0:3	 10�4 against � 0:54	 10�4) and two other

ones for values � 10�4 and � 2	 10�4. Even the

increasing the absolute value of the magnitude of this

component at four times leads to rather little increase

of the amplitude of oscillations of primary system.

However, such a flexible nature of the coefficient ,
does not apply to a change in its sign. The change of its

value from � 0:3	 10�4 to 0:3	 10�4 makes the

difference. At the frequency of the former peak

e ¼ 0:11), the amplitude of oscillations does not

increase (Fig. 17g). However, when frequency ratio

changes a little (e ¼ 0:12), the motion becomes

unstable (Fig. 17h).

5.4 On the choice of the frequency ratio

The term ‘‘frequency ratio’’, apparently, was used by

Dan Hartog [3] firstly in order to denote the ratio of the

frequency of an external excitation to the frequency of

the main mass. This designation is natural, under-

standable and generally accepted. At the same time,

although we are talking about the dynamics of the

‘‘main mass ? absorber’’ system, this value does not

reflect the influence of the latter. For this reason, it

seems to us that more natural for ‘‘frequency ratio’’ is

the expressionX0 ¼ X=ð1þ l2Þ, which represents the
ratio of the frequency of an external force to the

frequency of the main system with additional mass ma

(‘‘frozen’’ absorber). Of course, usually the mass of the

absorber is small compared to the main mass, and the

difference between X and X0 is quite small. However,

we see the following arguments in favor of preference

X0 before X:

(1) Referring to the surface view P5ðnÞ ¼ 0 which

at each point in the region Dpar determines the

value of the square of the amplitude of the

responses of the main system. Recall that

according to the formulas (3), the value corre-

sponding to x0 is e ¼ 0, and the value for x1 is

e ¼ l2=ð1þ l2Þ. As we see from Fig. 18, the

plane e ¼ 0 passes through the ‘‘vale’’ of the

surface (Fig. 18a, b), in the plane it is very close

to the minimum of the function nðeÞ (Fig. 18c).
(2) Another point arises from an analytical reason.

According to Sect. 2, with e ¼ 0 the system (11)

has a single stationary point for any set of

Fig. 17 Maximum responses of the primary mass for different values of ,
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parameters of the absorber. For nonzero value of

e, as can be seen from the Fig. 3, there are

configurations of the DVA which bring three

stationary points into consideration. Thus, the

zero value for e logically may be considered as

starting point for various analytical construc-

tions (the perturbation theory for instance).

(3) Frequently, the authors divide the frequency

range of x by using the x1 as a border and the

low frequencies (X\1) and high frequencies

(X[ 1) as dividing values. The subsequent

analysis is carried out taking into account this

partition. For instance, in [14] the authors

analyze the effect of a nonlinear absorber on a

linear basic system and give the conclusion: ‘‘In

the low-frequency range of X\1, a softening

stiffness absorber performs well by increasing

power absorption ratio and reducing peak. ...In

comparison, the hardening stiffness absorber

enhances power absorption and attenuates the

peak of kinetic energy in the high-frequency

range of X[ 1.’’ We believe, that such conclu-

sion will be more accurate by replacing X with

X0. We consider the following examples to

validate our statements.

Example 5.1 Let the mass ratio is

ma=m1 ¼ 0:0196 ðl ¼ 0:14Þ, and the frequency range
is e 2 ð� 0:2; 0Þ ðX0\1Þ. In this case a softening

spring (,[ 0) is preferable. Since the amplitude curve

has only one peak, it is necessary to minimize the

largest of the values nðc; h; ,Þje¼�0:2,

nmaxðc; h; ,Þ; nðc; h; ,Þje¼0: Taking into account that
on
oe je¼�0:2 [ 0, two values need to be compensated, i.e.,

the peak value and its counterpart at the right border of

the interval.

The ranges for parameters c; h; , we determine

according to approach described in Sect. 4. Thereafter

the optimal values are determined by simple procedure

which is illustrated in Fig. 19. Now taking c ¼
�0:094; h ¼ 0:095; , ¼ 0:9	 10�4; we plot the

frequency–amplitude curve (Fig. 20a). The maximum

value is nmax � 52:3. From the other side, counting the

right border as e ¼ 1� 1=ð1þ l2Þ � 0:0192 and

optimizing the parameters, we get another curve

which gives the bigger value for n :� 65:2.

Example 5.2 Another possibility to compare two

candidates x and x0 is the testing of the debatable in-

terval ½x0;x� or Ie ¼ ½0; 1=ð1þ l2Þ�. If one choose x
as a borderline, this is a low-frequency range, and a

Fig. 18 X0 as frequency ratio: the geometrical viewpoint

Fig. 19 Inspection of possible candidates: for given value of c different pairs of h;, are tested [the solid symbol is related to the peak

value of n, and empty symbol is related to the right border value of nð0Þ]
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high-frequency range with the choice of x0. At the

first case we have to take the softening stiffness

(,[ 0) and the hardening stiffness in opposite case.

Figure 20 presents the frequency–amplitude curves

(Fig. 20b) and the results of integrating the motion

equations for both cases (limit cycles in Fig. 20c).

Thus, the hardening spring gives about 25% lower

amplitude of the responses.

6 Concluding remarks

We have studied the problem of determining the

parameters of NDVA in order to reduce the maximum

possible amplitude of oscillations of the main system

in the conditions of uncertainties (frequency ratio and

amplitude of external excitation). Particular attention

is paid to the development of an analytical procedure

that allows to easily algorithmize the procedure for

setting up the absorber and testing the results obtained.

The influence of the nonlinear elastic characteristic of

DVA on the efficiency of work is studied, the

recommendations are given on the choice of the

spring (hardening or softening) depending on the

expected frequency ranges and the amplitude of the

external influence. The necessary and sufficient con-

ditions for the asymptotic stability of the quasi-

periodic motions of the mechanical system under

study are found based on the use of a simplified

mathematical model (the averaged equations). Tech-

nically, the proposed approach may be described by

the following scheme shown in Fig. 21.

The validity of using such a model is confirmed by

the results of numerical experiments. The approach

used in the article can be extended to cases of a

nonlinear main system and a system with many

degrees of freedom.

Finally, we emphasize importance of our study.

Namely, under conditions of uncertain parameters, the

direct numerical optimization can be inefficient or at

least costly. This is because for this problem there is no

explicit expression for the objective function, more-

over, it is a function of many ð� 4Þ variables, some of

which are tougher (a small change weakly affects the

behavior of the system), while other parameters are

very sensitive (linear and nonlinear absorber stiff-

nesses). In this work, to set up the absorber, an

approach based on visualization is used an image in

the form of a surface of the dependence of the

oscillation amplitude of the main system on the

frequency and nonlinear component (nl.c.) of the

absorber stiffness. This allows with easy localize the

interval of suitable values for nl.c. After that, the

remaining parameters are refined. Localization of the

interval for nl.c. seems to be an important step, since

Fig. 20 Comparison of two options: X0 (a, b—solid curve) and X (dashed curve)

Fig. 21 Scheme of the

developed technique
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initially this parameter is completely undefined (in

dimensionless parameters, the appropriate values

appear of the order of 10�5, so iterating over possible

values with a step 0.01, for instance, will be

ineffective.

The mathematical expression for the objective

function is rather cumbersome (and the function is

specified implicitly), but computer algebra helps to

carry out the necessary analysis.
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